

Inorganic-Organic hybrid materials consisting of a network using carboxylic acids as the connections between metal ions/metal ion clusters.

> PI: Anthony Cheetham Mentor: Crystal Merrill Funding: Unilever & NSF Intern: Stephen Ryan

Summer: 2005

Introduction:

The purpose of this project is to utilize single or heterogeneous phase reactions in aqueous media at elevated temperatures and pressure in order to crystallize inorganic and organic hybrids.

What is a crystal?Crystals are solids containing atoms arranged in a pattern that repeats periodically in 3-dimensions.

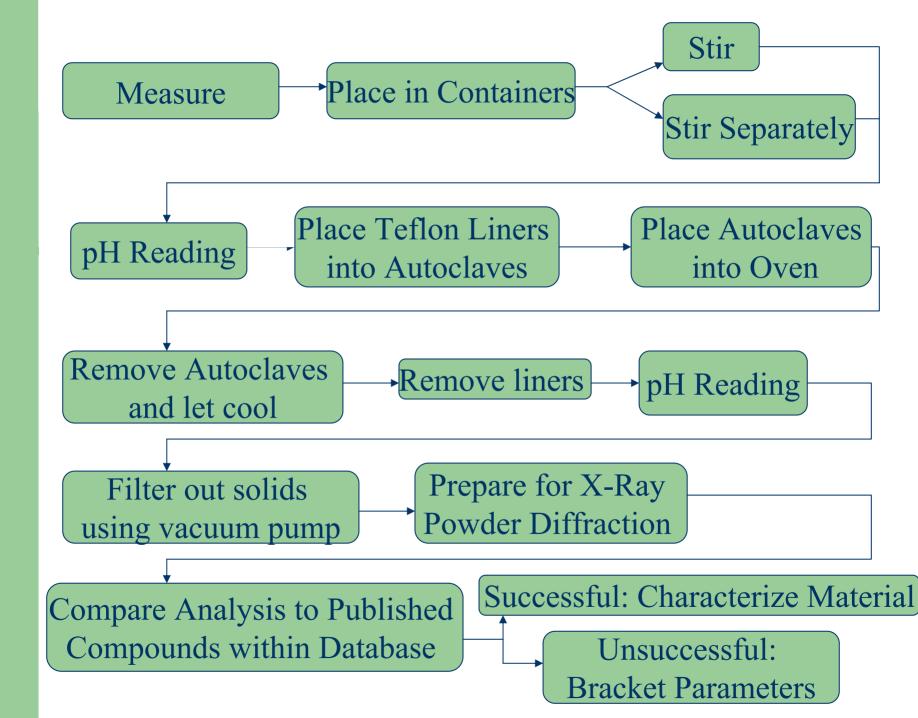


Table Salt: $Na^+ + Cl^- = NaCl$

•Hydrothermal Synthesis is carried out by the use of aqueous media that is heated to temperatures above 100° C and at self-induced pressure.

•Solution Chemistry is similar to hydrothermal processes, but is heated to temperatures below 100° C and not necessarily in sealed containers.

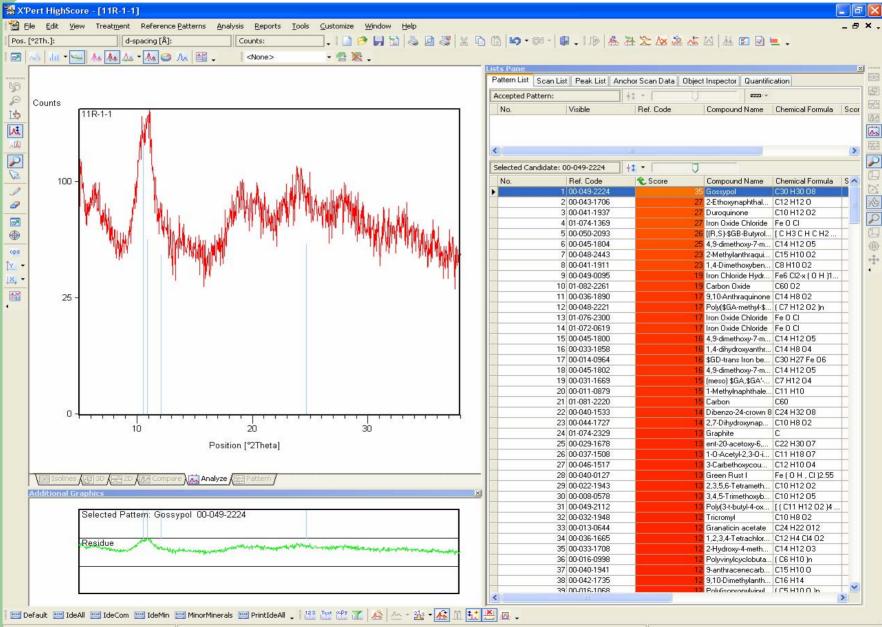
•Solvothermal Biphasic Synthesis utilizes the interphase between two different solutions being separated by their densities. Reactions/crystal growth occurs with the same type of heating and pressure conditions as a hydrothermal process.

Results:

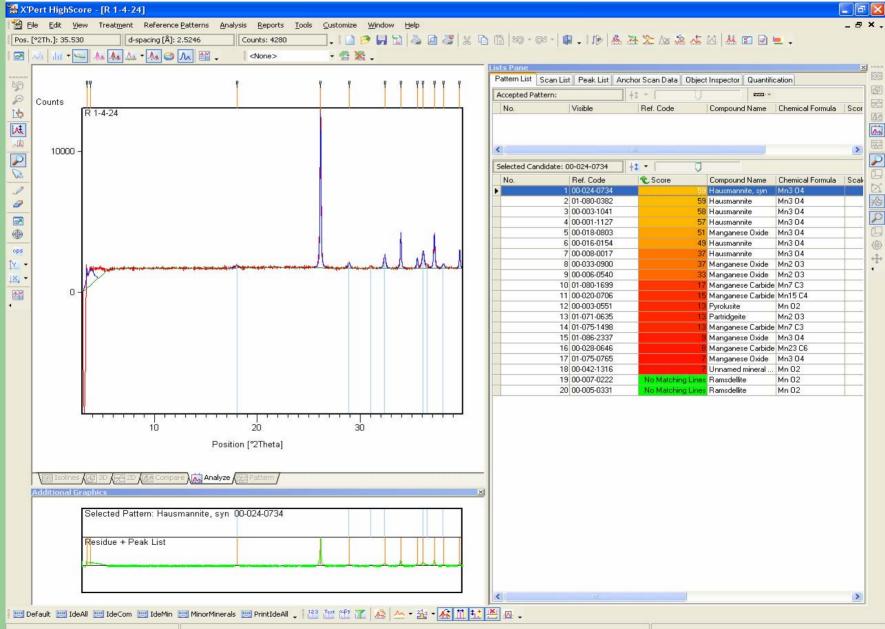
- **1.** Iron (III) Benzenetricarboxylate, to form iron analogs of indium structures.
- Produced a compound that was not an analog nor very crystalline.
- 2. Manganese Succinates, to reproduce earlier work in order to determine its crystal structure.
- Produced a combination of Hausmannite (Mn_3O_4) and Pyrolusite (MnO_2) .
- **3**. Manganese Carboxylate Molecular Magnetic Clusters, to create a framework that links clusters from a previous work.
- Produced a re-crystallization of Succinic Acid $(HO_2CCH_2CH_2CO_2H)$ and Adipic Acid $(HO_2C(CH_2)_4CO_2H)$.

Instruments:

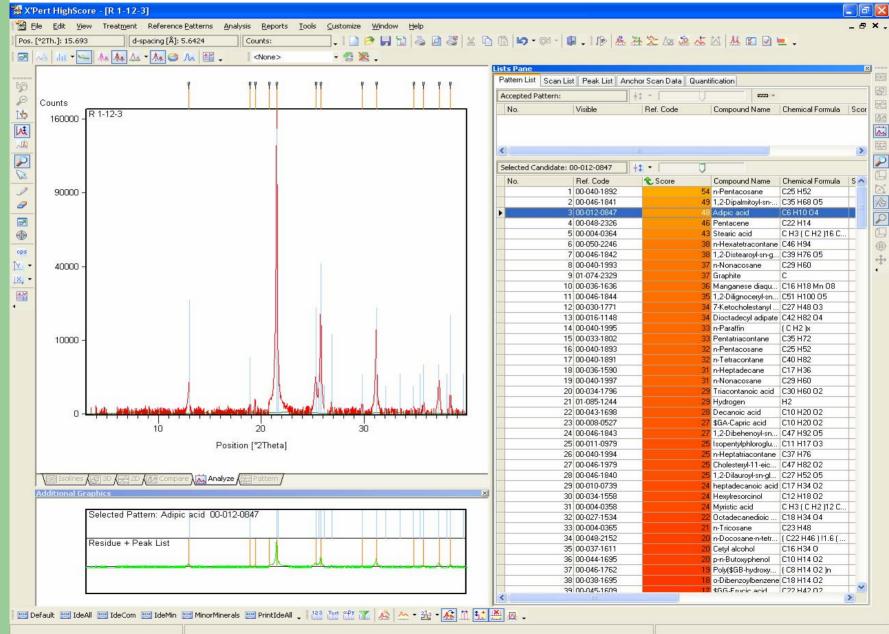
• Philips X'PERT MPD (Diffractometer)


Computer Programs:

- X'Pert High Score
- X'Pert Data Collector
- Conquest
- Diamond.



Analysis:


Powder diffraction pattern for Iron (III) Benzenetricarboxylate project (R 1-1-11).

Powder diffraction pattern for Manganese Succinate project (R 1-4-24).

Powder diffraction pattern for Manganese Carboxylate Molecular Magnetic Clusters project (R 1-12-3).

Conclusion:

By conducting numerous experiments with the goal of producing an inorganic-organic hybrid crystal, I was unsuccessful at all attempts. I have concluded that my research findings are inclusive and require more time to bracket parameters in order to obtain the desired results.

- Iron (III) Benzenetricarboxylate, to form iron analogs of indium structures, may not have been produced because the cooling rate may have been to rapid.
- Manganese Succinates, to reproduce earlier work in order to determine its crystal structure, may not have been produced because vital information was unavailable.
- Manganese Carboxylate Molecular Magnetic Clusters, may not have been produced because the soak time may have been extended over its threshold.

Iron (III) Benzenetricarboxylic Acid, to form iron analogs of indium structures (R 1-1)

Sample #	Pyridine	Salt	Acid	Water	pH In/out	Time In/out
10	0.34 g	0.277 g	0.17 ml	5.02 ml	4.37/?	10:42 am / 2:50 pm
11	0.31 g	0.277 g	2.147 ml	5.03 ml	4.17/ 4.13	Same
15	0.31 g	0.274 g	0.246 ml	5.04 ml	4.04/ 2.69	Same
Salt: Iron (III) Chloride HexahydrateChemical Formula:Salt: Iron (III) Chloride HexahydrateFeCl3 6H2OAcid:Benzenetricarboxylic AcidC6H3(Co2H)3PyridineC5NH5Water: Deionized WaterH2O						FW: 270.3 g/M 210.14 g/M 79.05 g/M 18.00 g/M

T = 125° C for 100.13 hrs

Manganese Succinates, to reproduce earlier work in order to determine its crystal structure.

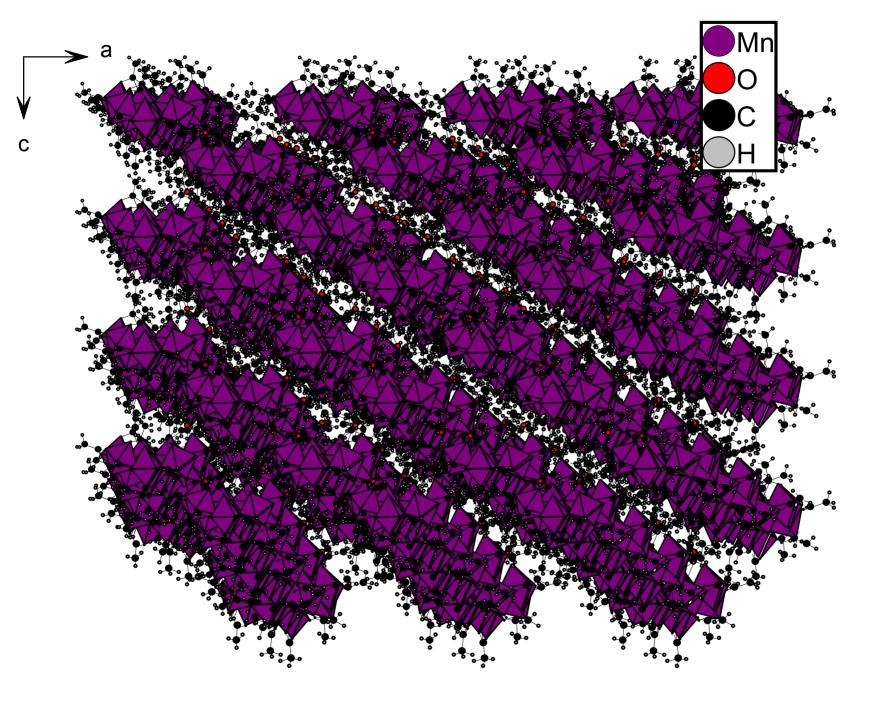
Sample #	Salt	Base	Acid	pH In/out	Water	Time
NC3	0.196 g	7/1 drops	0.234g	8.59/ 5.56	5.03 ml	2:27
23	0.198 g	8/23 drops	0.237g	9.94/ 7.77	5.0 ml	same
26	0.197 g	11/4 drops	0.237g	12.96/ 12.88	5.02 ml	same

Salt: Manganese (II) Chloride Base: Potassium Hydroxide Acid: Succinic Acid Water: Deionized Water

T = 125° C for 72 hrs

Chemical Formula: MnCl₂4H₂O KOH HO₂CCH₂CH₂CO₂H H₂O

FW: 196.00 g/M 56.11 g/M 118.09 g/M 18.00 g/M


Manganese Carboxylate Molecular Magnetic Clusters (R 1-12)

Sample #	Salt	Salt (II)	Acid	Acid (II)	Water	Mixing Ratio
1	4.001 g	0.101 g	2.5 ml	0.165g	1.8 ml	1:0.5
2	4.00 g	0.101 g	2.5 ml	0.331 g	1.19 ml	1:1
3	4.001 g	0.100 g	2.5 ml	0.497 g	1.81 ml	1:1.5

	Chemical Formula:	FW:
Salt: Manganese Acetate	$Mn(CH_3COO)_2 X 4H_2O$	245.09 g/M
Salt (II): Potassium Permanganate	KMnO ₄	158.03 g/M
Acid: 60% solution of Acetic Acid	CH ₃ COOH	43.23 g/M
Acid (II): Adipic Acid	$HO_2C(CH_2)_4CO_2H$	146.14 g/M
Water: Deionized Water	H ₂ O	18.00 g/M

Mixing Ratio = Manganese Acetate: Adipic Acid

 $T = 60^{\circ} C$ for 24 hrs

Results:

Note: all experimental runs have 3-samples per run

Experimental Runs:	Date:	Comments:	Method
R 1-: P#1	6-22-05	Involved combining Iron (III) Chloride Hexahydrate with Benzenetricarboxylic Acid in order to produce an inorganic-organic hybrid framework.	Hydrothermal
R 1-2 P#2	6-24-05	Changed both salt and acid: from Iron (III) Chloride Hexahydrate to Manganese Acetate and Benzenetricarboxylic Acid to Succinic Acid because of advice from advisor, Tony Cheetham. Results : all three samples were thrown out due to insufficient amounts of product.	Hydrothermal
*R 1-3 P#2	6-29-05	Changed salt, from Manganese Acetate to Manganese (II) Chloride because of mentor's personal preference. Now controlling the value of pH by using Potassium Hydroxide. Sample R 1-3-10: possibly Hausmannite (Mn3O4) a type of Manganese Oxide from X-Pert high Score	Hydrothermal
*R 1-4 P#2	6-29-05	Same mixing ratio as R 1-3, but changed pH values from: 12.5, 13, and 8.5 to 8.5, 10, and 13. Samples R 1- 4-24, and R 1-4-26 both produced combinations of Hausmannite and Pyrolusite from X-Pert High Score.	Hydrothermal

*R 1-5 P#2	6-29-05	Same mixing ratio as R 1-4, but changed pH values from: 8.5, 10, and 13 to 10, 8.5, and 13. Samples R 1-5-1, and R 1-5-3 both produced combinations of Hausmannite and Pyrolusite (manganese oxide) from X-Pert High Score.	Solution Chemistry
Magnetic Clusters Sample #1 P#3	6-30-05	Involved combining Manganese Acetate, Acetic Acid, and Potassium Permanganate. Note: burnt (voided) due to temperature sensitive compounds.	Solution Chemistry
R 1-6 P#2	7-5-05	Same mixing ratio as R 1-5, but changed pH values from: 10, 8.5, and 13 to 8.5, 7.5, and 9.5. Note: No possibilities from all three samples due to small peaks and large angles.	Solution Chemistry
*R 1-7 P#2	7-7-05	Same mixing ratio as R 1-6, but changed pH values from: 8.5, 7.5, and 9.5 to 9.5, 7, and 6. Sample R 1-7-24 produced a combination of Hausmannite (Mn3O4) and Rhodochrosite (MnCO3).	Solution Chemistry

Magnetic Clusters Sample #2 P#3	7-8-05	Mixing ratios are the same as sample #1 (1:1), but Added an Acid, Succinic acid in order to link the clusters due to their bond lengths. Its color is black sludge. This sample was not in the data base and requires further investigation	Solution Chemistry
Magnetic Clusters Sample #3 P#3	7-8-05	Mixing ratios are (1:0.25) Manganese Acetate: Succinic acid No results obtained (abort)	Solution Chemistry
Magnetic Clusters Sample #4 P#3	7-8-05	Mixing ratios are (1:0.5) Manganese Acetate: Succinic acid No results obtained	Solution Chemistry:
R 1-8 P#2	7-11-05	Involved combining Cyclohexanol with Succinic acid and Manganese Chloride in order to produce a Biphasic solution. To produce crystals at the interface between the acids and alcohol with the salt and water. No results obtained.	Solvothermal Synthesis
R 1-9 P#3	7-13-05	Mixing ratios are: 1:1, 1: 0.75, and 1: 1.25 Manganese Acetate: Succinic acid No results obtained	Solution Chemistry

R 1-10 P#3	7-13-05	Same ratios as R 1-9 but done hydrothermally No results obtained	Hydrothermal
R 1-11 P#3	7-15-05	Change in acid, from Succinic Acid (4C) to Adipic Acid (6C). This is because Adipic is a longer carbon chain that we believe will allow for the bridging of the cluster. Mixing ratios: 1: 1.5, 1:1, and 1: 0.5 Sample R 1-11-1 shows large chunks and under microscope appears to be fin like crystals.	Solution Chemistry
R 1-12	7-15-05	Same mixing ratio and ingredients as sample R	Solution
P#3		1-11, but cooked at lower temperature. Sample R 1-12-3 shows large chunks and under microscope appears to be leaf/fin like crystals. Prep for x-ray, and compare powder pattern against Adipic Acid in database. Results show that our production is a re-crystallization of the Adipic Acid.	Chemistry

R 1-14 P#3	7-19-05	Same mixing ratios as sample R 1-13, but changed acid, from Adipic acid to Glutaric Acid (5C). Results are unknown due to filtering and preparation for x-ray powder diffraction required.	Solution Chemistry
R 1-15 P#3	7-20-05	Same mixing ratios (1:0.5, 1:1, and 1: 1.5) as sample R 1-14, but cooked at a different temperature. Results are unknown due to filtering and preparation for x-ray powder diffraction required.	Solution Chemistry
R 1-16 P#3	7-20-05	Same mixing ratios as sample R 1-15, but hydrothermal. Results are unknown due to filtering and preparation for x-ray powder diffraction required.	Hydrothermal

Challenges:

ening

-Producing a crystal worth doing a "single crystal diffraction" on (this would explain the structure of the crystal).

-Black Box Chemistry (we don't know how things are inside the autoclaves).

-Learning Curve (learning a lot of new procedures in a short time). Resources (retrieving supplies/equipment necessary for experiments).

-X-Ray Diffraction (scheduling availability and breakdowns).

Problems:

Both XRPD (diffractometers) have been inoperable at times.