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The goal in this project was to develop a mathematicalel that can be used to simulate the
behaviors of a school of fish, and thereby increésegeneral understanding of the behavior patterns
of migrating schools. We used and expanded on a discretd ah@aely well-known to researchers in
this field. This document will attempt to explain hove thodel works, as well as describe our
solutions.

Using what is known about how fish sense changeineéhvironment and use information
to navigate (see the work of Partridge (1980, 1982)), we camaitematics in a computer program
to mimic certain known collective behaviors of amalof fish. Not all behaviors of fish are
deterministic, especially those of individuals, but theradictability of living organisms can be
simulated with random numbers in the program. If a maalebe constructed in such a way as to
leave room for data-driven parameters such as oceantsirtemperature data, food availability, etc.
to be input, fisheries resource managers and sciecastsetter predict the sizes, directions, and
spatial distributions of migrating or stationary schailish. Our model has this capability, but it is
not discussed in this paper. We focused on some knownrgattefish behavior, and the required
parameterizations for a successful application of théetto those behaviors. This model uses
discrete equations to give solutions for localized bemavSimilar models using continuous, ordinary
differential equations can be used to study global bets\and three-dimensional adaptations are
possible.

The values used for our parameterizations (in Franma xample) are basically
nondimensionalized, which allows them to be applicabie variety of fish species. As an example,
we considered the capelin fish of the north Atlantibich ranges from 3 to 7 cm in length. The
values, therefore of our zones of attraction, origmaand repulsion could easily be interpreted in
terms of centimeters for this particular fish.

Our immediate goal was to achieve solutions of thesgc types: migrating schools, swarming
schools, and circulating schools, all using the same bade but with different distance, velocity and
angle parametersThe simulations produced short animations saved ifioavat. We ran them on a
Hewlett Packard xw4300 computer using a Linux operating sy3teencomputing program Matlab
was used to write the code and run the simulations. igiie$ accompanying this article are
snapshots of these animations, and the axes ard gtalendimensionalized units.



The M odel

Our Model, in simplified form:
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In the program itself, this equation looks like this:

x(k) = x(k) + dt * v(k) * wVector(1) / norm(wVector);
y(k) = y(k) + dt * v(k) * wVector(2) / norm(wVector);

This is the final equation of a long series of coae tiefines and controls many parameters
that determine the position, velocity and angle of diabh Most of those parameters are initialized
and defined with the block of code shown in Frame 1. ©de @lso included a program to define
other features of the fish and their interactions;cgram to draw each fish in a frame using the
mathematics and geometry outlined in the code, and a jpndbed linked frames to make the
animations.

Before discussing the actual solutions, we should figiagn some of the basic features of the
program. We have based our model on the principles outin&tirok, Vicsek, Ben-Jacob, Cohen,
and Shochet (1999). Our model uses a zone of attractmmmeaof orientation, and a zone of repulsion
for each fish. See Frame 2 for the code relating theses. Briefly, a zone of attraction is responsible
for fish gathering, or coalescing into a school, aezohorientation is responsible for fish becoming
aligned with each other, and thereby producing paralleésicha zone of repulsion helps keep fish
from excessively colliding with one another.

In the “grammar” of our program's code,ld i the subject fish, and @’“is an object fish.

That is, in all calculationg is at the center of the zones, gqrigla neighboring fish within one of the
zones. Referring to Frame 2 will help the reader to nataled how the mathematics is structured after
reading the following explanation.



The Zones of Attraction, Orientation, and Repulsion, and how they influence the
behavior of a fish.

1) Zone of repulsion
3) Zone of attractio

A “fish”
2) Zone of orientati

1) For any fislj that is within the radius of repulsion for fiklset in the initial conditions of the
program, the code calculates the angle away from 8taafid averages its present angle with the
calculated angle. In this way a fish will turn awaynfranother fish if it gets too close.

2) For any fishj that is within the radius of orientation for fiklset in the initial conditions of the
program, the code simply takes a weighted average @&targle andé's angle. In this way a fish will
tend to align with other fish within a specified radidi®oentation.

3) Finally, for any fishj that is within the radius of attraction specified fish k, the code calculates
the angle towards that fish and averages its presem witglthe calculated angle. In this way a fish
will turn towards another fish within this radius.

* * *

These calculations are done at every time step altienvevery fish usually taking in the
positions of many fish at once and balancing all te@kted averages. Then, having “chosen” an
angle, the fish moves according to a specified velo€itg velocity also has a random component, so
that how fast a fish moves towards, away from, aalignment with another fish is also subject to
stochastic perturbations.

It should be emphasized here that the above-mentiveedges between angles are in fact
weighted averages, and that the weights used for thessgaseare important controllable parameters
of this program. In fact, it will be shown later thhae relative sizes of these weights and indeed their
very nature are crucial determinants of the desiredisngut

Migrating Schools

A migratory solutionis characterized by two basic phases. In thediase the fish are
observed coalescing from a randomly scattered configaratio a schooFigure 1 shows a
simulation after just a few iterations, and the figh @l oriented towards a centralized location. In



figure 2 the fish are completing the coalescence phase and grimwirards a parallel motion, but
some fish are still outside of the school and the @khtinal direction has yet to be determined.
Finally, infigure 3 the school is formed, has assumed parallelism, areiarbng to migrate. Once
the direction of migration has been determined thedahith remain headed in that direction, or vary
only slightly for as long as the simulation runs. Thas&pshots are from a simulation called
“trueMigration.avi” and the salient parameters areaiized thusly:

nunber O Fi sh = 250; >this is how many fish are in the sinulation

v = 5*ones(nunber O Fi sh, 1); >a vel ocity coefficient

dt = 0. 25; >the tine step

radi usOf Ori entati on = 55; >the sizes of the zones are in nondi nensionalized
units

radi usOf Attraction = 150;
radi us Repul si on = 12;

attracti onWeight = 1.5; >wei ghts are used in calculating angular direction
repul si onWi ght = 0.7;
anmpVNoi se = 0. 2; >controls the amount of random velocity variation
anpAngNoi se = 0. 55; >controls the anmount of random angul ar direction
Frame 1.
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Fig.1 The beginning of the coalescence phase.
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Fig.2 The school is nearly completely formed, most fish areedidput a final direction has not been chosen.
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Fig. 3 The school is now completely parallel, and is migratirggstraight line.

The migratory solution, out of the three we studied,thasimplest components. A large zone
of attraction ensures that most, if not all fisimjthe school, and a small zone of repulsion allows the
school to be more or less homogenous without artifitiernal structures. The angle noise in the
example above (Frame 1) is relatively moderate;ldvisenough so that the fish swim in a natural-
looking manner, but high enough to introduce significant uhgtability. Small velocity and time
step changes have little noticeable effect on thawehof the school, but will slightly alter the
simulation's appearance. Larger adjustments of velowitytime step produce simulations that do not
look realistic and may not be useful.

The migratory to swarming continuum
In these, and all the simulations we have done,ambalhas had to be struck between the sizes
of the zones, their respective weights, the noise tlag total number of fish. Each parameter can be



thought of as a continuum, with behaviors adjusting ircilgvays as one moves along the
continuum. Along these continuums there are “tipping pbwmkere the school's behavior actually
changes from one state to another. For example, dawyeaae zone of attraction relative to the
number of fish might force smaller, more numerous skshmoform, or simply prevent any schools to
form. Or, decreasing the zone of repulsion relativila¢éoother zones might force small clumps of fish
to stabilize within a school and create artifiaérnal structures. While examples like these abound,
all parameters work in concert with each other arddatten difficult to pin a specific behavior to one
particular parameter. Similar behavior changes cachieved by adjusting different parameters, as
will be seen.

To achieve a stable, swarming school of fish wediiced a new parameter, which we called
“self weight”, that described a fish's tendency to swirthe same direction from one time step to the
next. This parameter appears to correlate with the euofifish in that the more fish are in the
simulation the higher self-weight needs to be for th®sl to remain stable. In fact, we found self-
weight needed to be approximately 1.5 to 2 times thenataber of fish to achieve a swarming
solution. This greatly outweighs any other of the zeveghts, sometimes by a factor of 100 or more.
In exploring the effects of the self-weight parameterfeund that a stable, swarming solution can be
made migratory by adjusting down only the self-weight. Adjgst a small amount will cause the
swarm to drift around, but there is still no parallelisnthe school. Adjusting it down more causes
more drift, and some fish begin to align with each otRarther downward adjustment, approaching
25% or less of the number of fish, pushes the schoolatipping point where it assumes parallelism
and travels in a well defined direction, in other woitdbecomes in fact a migratory solution.

Alternatively, a stable swarming school can be nmaigeatory by adjusting only the amount
of angle noise, although the numbers are less drar@aticstable swarm used an angle noise
coefficient of 0.72. When it is gradually adjusted downwandsround 0.12, the same continuum of
behaviors is observed as when the self-weight is dsetk although there are some differences. By
adjusting the angle noise, the school also achievesafigbenotion and migrates, but each fish is
moving in a much smoother path.

Angle noise and self weight are two examples of parnsi¢hat control a continuum of
behaviors, along which a tipping point exists wherestti®ol changes from migratory to swarming,
and vice versa. Other parameters, such as the numfig, afnd the size of the zones operate
similarly. An interesting example of this balancexsterbalance interplay is BWmigration.avi, in
which a randomly scattered configuration begins to soalebut then hesitates and almost stops all
movement for several seconds. Then a small stochzestiurbation alters the direction and the group
continues to form and grow, changing direction and gatipepeed. Other trials of this particular
simulation resulted in the fish actually swimming bacldgaor more than half of the simulation. In
this simulation the zone of attraction is only sligharger than the zone of orientation (120 and 100,
respectively), and the zone of repulsion is small (&), ahigh degree of noise is introduced in both
velocity and angular direction. Clearly, this is naealistic simulation of fish behavior, but it helped
us learn more about the zones.

Considering these continuums of behavior, some migratdutionscould more realistically
be termed $emi-migratory”because the school does move in parallel, but doesrimblysadhere to
any particular direction. Instead the school wander&mofess, according to some internal stochastic
perturbations (see Figure 4). It is interesting to tiodé for the more strictly migratory solutions, the
final direction chosen by the school is predominagétiermined by the position of the very last fish
or group of fish to join the school, which illustrates important ideas: 1) the way the three zones
work together, and 2) the principle of collective behavide fish in the lead of the school “see” that
fish once it enters their zone of attraction and enmwards it, then they align themselves with it
when it enters their zone of orientation, and alakher fish in the school follow suit. It works ethac
the same for the outsider fish, of course, and whesdheol gets close enough to be within its zone
of repulsion it turns around, thereby moving ahead ofjrbilite same direction as the school. This



seems to be reasonable behavior for a schoolofTise other principle at work here is the idea of
collective behavior. This interplay and balance, whgrthe behavior of the whole group is
determined by a complex combination of predictable resgoto outside stimuli and stochastic
perturbations, and no single member of the group is desijiaata leader acting with its own
volition, is at the essence of the entire simulation
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Fig. 4 A tracking diagram of a semi-migratory solution. FisHesz® at top, then migrate in
a randomly determined path towards bottom of diagram.

Stable Swarming Solutions

In searching for swarming solutions, we were lookingafechool to coalesce and stay
primarily in one location with the fish continuouslpwng around in smooth, randomly directed
paths. A mentioned earlier, the addition of the selfyisteparameter, and by adjusting the angular
noise we could easily make the fish swarm. The inalugfcself weight is achieved by letting the
andk identifiers be equal, and addifig angle multiplied by the self weight, as shown in Frame
Adding a self weight makes sense in that it is reaseriabh fish to have a certain directional or
angular momentum, that is, a tendency to keep swimmitigeisame direction at any given time step.
A good example of a swarming solutiomrmgdiumSwarm.avi, one frame of which is shown in
Figure 5. In it one can see the fish coalesce witigrradius of orientation, and simply swim around
randomly. The only unifying characteristic of the fishihat they stay in the school; there is no
parallel alignment whatsoever. The school drifts araligtitly, and in repeated trials of this
simulation the school sometimes drifted more and samestless, but there is no direction chosen,
and the drifting appears to be random. When more fisadded to the school, the self-weight needs
to increase, keeping at about 150% of the number of fiskeBping this balance and making other
small changes a swarming solution can be obtainedvisttally any size school.
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Fig.5 A frame from “mediumSwarm.avi”

Here is where “Self Weight” is added into the progrant likesthe zones of attraction, orientation,
and repulsion, 'self weight' is used to influence the awiglee fish. Notice also how the radius of
repulsion subtly differs from the radius of attraction.

if j==Kk)
averageCos = averageCos + selfWeight*cgi§));
averageSin = averageSin + selfWeight*siglE));
counter = counter + selfWeight;

elseifdist <= radiusOfRepulsion)
angleBetweenl = atan2(y(k)-y(), x(k)-x(j));
averageCos = averageCos + repulsionWeiglitiicgkeBetween1);
averageSin = averageSin + repulsionWeightisigieBetweenl);
counter = counter + repulsionWeight;

elseif{dist <= radiusOfOrientation)
averageCos = averageCos + orientationWeigg(angle()));
averageSin = averagesSin + orientationWesgih(angle()));
counter = counter + orientationWeight;

elseifdist <= radiusOfAttraction)
angleBetween2 = atan2(y(j)-y(k), x(j)-x(k));
averageCos = averageCos + attractionWeigg(angleBetween?2);
averageSin = averageSin + attractionWesghangleBetween?2);
counter = counter + attractionWeight;

end

Frame 2.



Below are the same initialization parameters (seenrl, also) for a swarming solution, for
comparison with the migratory solution. Note alsoitlwdusion here of orientation weight.

numberFish=15I
v=2.0*abs(randn(1,numberFish));
dt=.5;
radiusOfOrientation=40;
radiusOfAttraction=120;
radiusOfRepulsion=4.5;
repulsionWeight = 1.15;
attractionWeight=3.35;
orientationWeight=1.0;
selfWeight = 350;
ampVNoise=.050;
ampAngNoise=0.69;
ampPosNoise=0.15;

Frame 3.

Circulating Solutions

The circulating solution, or torus solution, grew frdra swarming. We began with a stable
swarm, and found that by increasing only the radiuspfls@n relative to the radius of orientation
we could take a swarm solution and give it ring formatir,the difficulty was in forcing the fish to
swimaroundthe circle. In all of our initial attempts the scheither assumed parallelism and began a
migratory path, moving as a rigid circle, or the fish jueved within a small section of the circle,
maybe 60 to 180 degrees of arc, and occasionally crossetbcueother part of the circle. See
CircleMoviel.avifor an example of this as well as Figure 6. It seemgiddbthat the problem was in
the angles chosen by the fish, so focusing on thatatien weight and the angular noise made sense.
Increasing the orientation weight slightly affected ¢leulation, but not significantly nor
consistently. The same could be said of lesseningnidnglax noise. Orientation weight, as well as the
other weights had up to this point always been conptaaimeters. We could change them for any
trial, of course, but during any trial they were alwagastant. We wondered what would happen if
randomness were introduced into this part of the simulaéind so multiplied the orientation weight
by a random number. This produced a stable, circulatirgpsoifi fish, a snapshot of which is shown
in Figure 7. Repeated trials, and trials of much longer auratways showed the same stable
circulating school. Furthermore, if instead of a ranammmber used as an orientation weight a
constant value from within the same range was usedgctieol quickly assumed parallelism and
moved into a directly migratory solution, albeit an @fistic-looking one.

In Frame 4 are the initializations for one versida circulating school. However we found
successful solutions using a rather wide range of valuedfoe of these parameters. For example,
the attraction weight can vary from about 3.5 up 8, anddheion persists, although the thickness of
the ring increases with the lower attraction weight&] more fish cross over or temporarily leave the
circle. Repulsion weights should scale with attracti@igims. Self-weight can vary widely, from
about 200 to 400, without changing the number of fish. Thelai® sizes of the three zones can
change, but should remain basically within these prapwstiThe question of the scaling relationships
between these parameters is interesting, deservin@fgtindy.



numberOfFish = 300
v=abs(3.2*(randn(1,numberOfFish
dt = 0.45;
radiusOfOrientation = 40;
radiusOfAttraction = 60;
radiusOfRepulsion = 32;
selfWeight = 295;
attractionWeight = 4.55;
repulsionWeight = 2.85;
ampVNoise = 0.65;
ampAngNoise = .03;

Frame 4.
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Fig.6 The non-circulating circle of fish. Note that althofigh are configured in a ring, some
fish swim outside or inside the ring, and fish are positi@igandom angles around the ring.
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Fig. 7 A stabilized circulating school. Note the small amotiahgular deviation.



Why did this happen? In viewir@ircleMovie2.avj or in the even more dramatic example of
stableCircle.avi , one immediately notices the effects of a strongaetiibn weight and the small
difference between the zones of orientation and repulsThe school immediately coalesces into a
ring formation out of the initial randomly scatteredhfiguration, and the size of the ring is consistent
with the radii of orientation and repulsion. The nels@rvation is that at first, fish are behaving much
like in CircleMoviel.avi, in that they are in a ring but are not necessairitylating around the ring.
The angular variation is controlled somewhat by thallsifference between the zones of orientation
and repulsion, but not enough to force them around tHe.cifden the behavior begins to change.
After a few more iterations, the fish gradually redueartangular variation, and begin to circulate,
while occasionally straying outside the ring, but neyemnging direction. The longer the simulation
runs, the tighter the control on the angular directiothe fish. In a sense, the fish are caught between
the zones of repulsion and orientation, and the avenagjes are approaching a limit within these
boundaries over time. It appears that because theati@ntveight is variable it is allowed to adjust
to within the set zones.

These circular solutions appear to be stable, andtimnierease stability over more iterations
of the program, and are characterized by fish circgjatirboth directions simultaneously around the
circle. Unidirectional solutions appear unstable, deadt the solution of a stable, unidirectional
circular solution has yet to be achieved with this progrThey can be made metastable, however, so
we believe they represent transient solutions. Maea@xactly how the discrete solutions achieved in
this model translate into three dimensions has ybetexplored.

Conclusions and Opportunities

We have shown that using one discrete model a variestylutions are possible, and that the
great many combinations of adjustments and balancitigso$et of parameters creates a very rich
field of possibilities. Some of these parameterizatioperate as continuums, with tipping points of
state change. We have focused on three solutions: ongratable swarm, and stable circle.
Especially interesting are the stable solutions, becthsr facilitation required the introduction of the
self-weight, and stochastic weighting, which both addrardayer of richness to the model. The
investigation into the scalability of parameter ggtssents an opportunity for further investigation, as
does a three dimensional version of the model. Fuvtbek is also possible on transient solutions
such as unidirectional circular solutions and ones titatrporate elements of both stable and
migratory solutions. It is our hope that this work Wwél some contribution to the already significant
body of knowledge aiding fisheries resource managers agmtists, in that it gives another
perspective from which to analyze collected data.
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