Process Plants for the Not So Near-Term Future

Workshop on New Frontiers in Sustainable Fuels and Chemicals: What's Beyond the Horizon? University of California, Santa Barbara February 6th, 2014

> Ashok Rao, Ph.D. Advanced Power and Energy Program University of California, Irvine

Outline

- A Possible Solution for Environmental Sustainability
 - Coproduction of Electricity & Chemicals
 - Can Vary Electricity / Chemicals Ratio
 - To Complements Intermittency of Renewables (Wind/Solar)
 - Start Phasing in Biomass
- An Advanced Plant Concept
 - Thermal Conversion
 - Step Change for Expensive Biomass
 - Hydrogasifier
 - SOFC

No Single Magic Bullet

Biomass

- Synthesis gas or syngas (H₂, CO, CO₂) by thermal conversion
- Small carbon footprint on an LCA basis
- But low energy density, distributed resource & seasonal

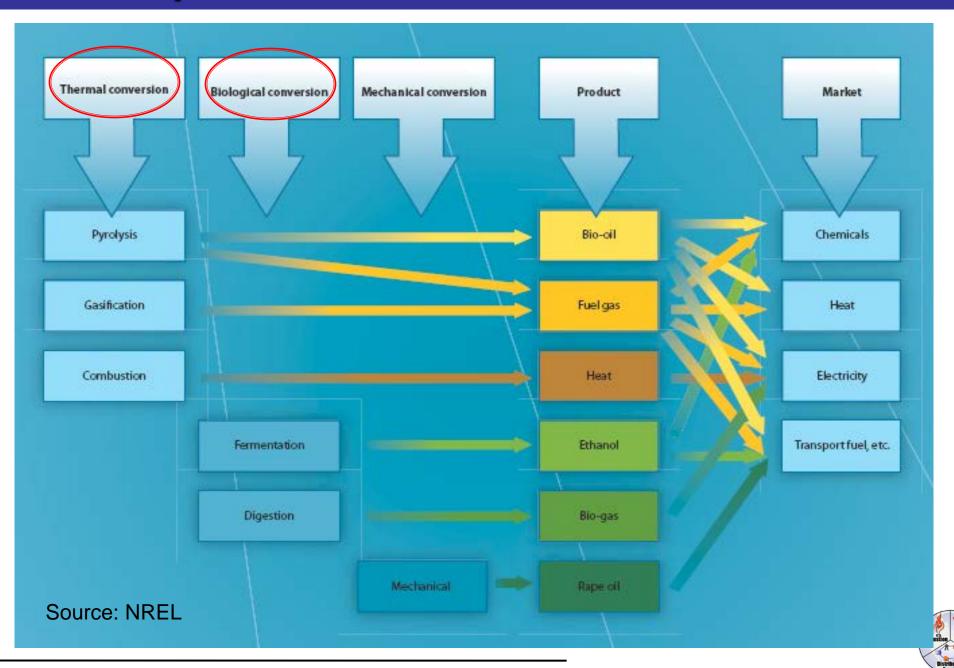
Other Options

- Wind
- Direct Solar
- Nuclear
 - H₂ by electrolysis + CO/CO₂ from other sources*

* Forsberg C., MIT (http://www.ourenergypolicy.org/wpcontent/uploads/2011/12/2010_07_AICHE_CEP_Forsberg_NuclearPowerToProduc eLiquidFuelsChemicals.pdf)

Energy Crops

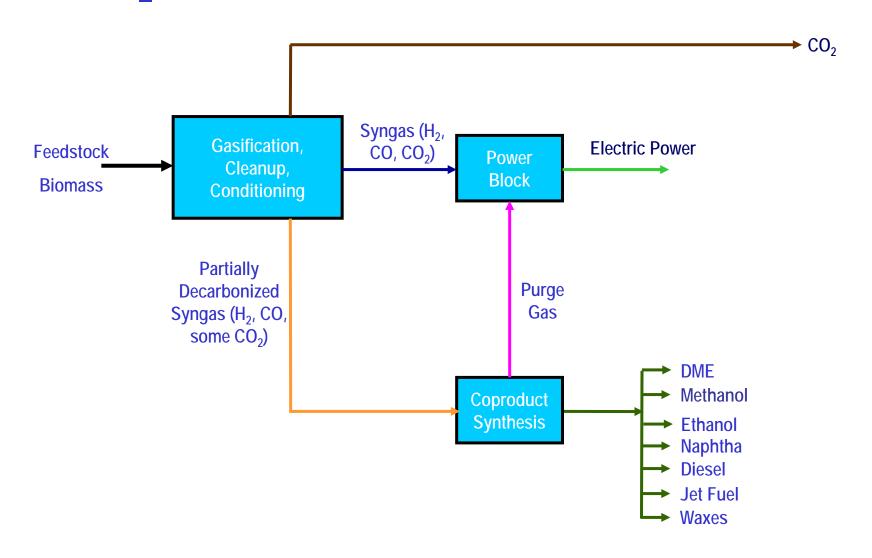
- Some promising crops but need to further improve yields
 - -Hybrid poplar
 - -Hybrid willow
 - -Switchgrass
- Need plants species that do not compete with food production



Short-Rotation Willow (8-18 dry tonne/hectare/yr)

Switch Grass (9-28 tonne/hectare/yr)

Options for Biomass Conversion


Thermal vs Biological Conversion

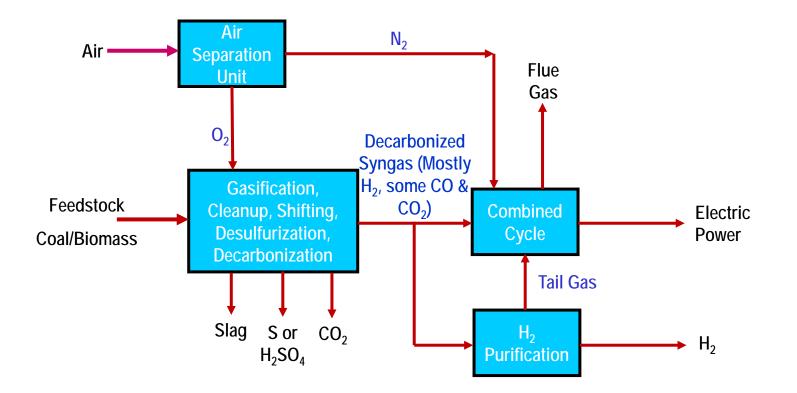
- Studies have shown they are similar in
 - -Capital cost
 - -Operating costs
- Slight advantage for biological conversion in efficiency
 - -When conventional gasification used for thermal conversion
- Slight advantage for thermal conversion in water consumption

Gasification Coproduction Opportunities

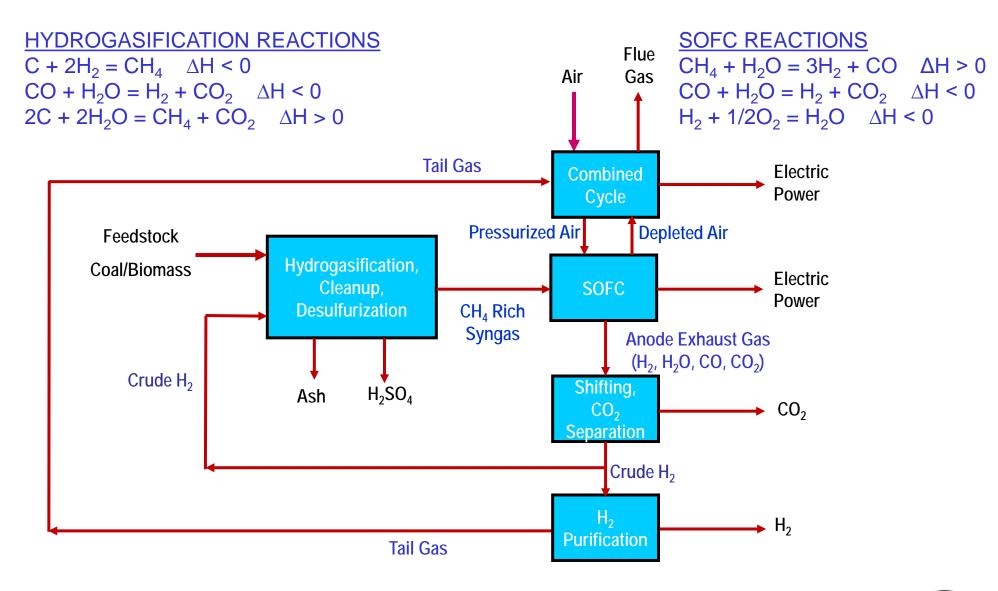
H₂ or Alcohols or F-T Liquids or Fertilizers

Synergy in Gasification Coproduction

- Load following capability
 - Complements intermittent renewables
 - Change split between syngas to power block versus synthesis unit
- Economies of Scale of Larger Units
- Savings in Synthesis Process
 - Reduction in synloop recycle
 - Higher reactor through-put (less inerts buildup)
 - Reduced power consumption
- Integration of Steam Systems & Other Utilities


Current vs Advanced Coproduction

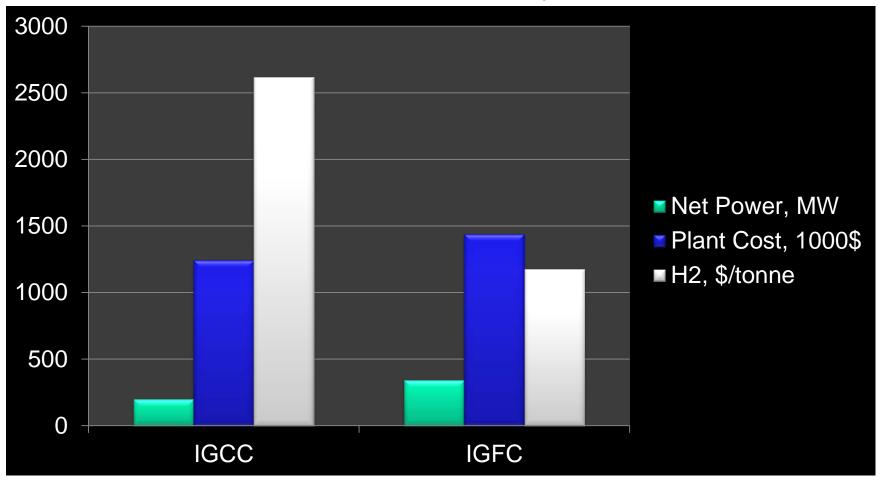
Current Technology H₂ Coproduction - IGCC


GASIFICATION REACTIONS

Partial Oxidation: $2C + O_2 = 2CO \quad \Delta H < 0$ Steam Gasification: $C + H_2O = CO + H_2 \quad \Delta H > 0$ Shift: $CO + H_2O = CO_2 + H_2 \quad \Delta H < 0$ COS Hydrolysis: $H_2O + COS = H_2S + CO_2 \quad \Delta H < 0$ Methanation: $3H_2 + CO = CH_4 + H_2O \quad \Delta H < 0$

Future Technology H₂ Coproduction - IGFC

Thermal Performance with H₂ Coproduction & Carbon Capture*


	IGCC	IGFC
Coal feed rate (dry basis, tonne/D)	2511	
Corn stover feed rate (dry basis, tonne/D)	647	
Cereal straw feed rate (dry basis, tonne/D)	647	
Total energy input (HHV, GJ/hr)	3902	
Total gross power (MW)	331	608
Total internal power consumption (MW)	130	265
Net Electric Power(MW)	201	343
H ₂ exported (tonne/D)	155	
H ₂ exported (% of input fuel HHV)	23.41	
Net power generation efficiency (% HHV)	18.51	31.63
Effective Efficiency (% HHV)	30.4	43.5

* Li M, Rao AD, Samuelsen GS. Performance and Costs of Advanced Sustainable Central Power Plants with CCS and H_2 Co-production. Applied Energy, Vol. 91, pp 43-50, 2012.

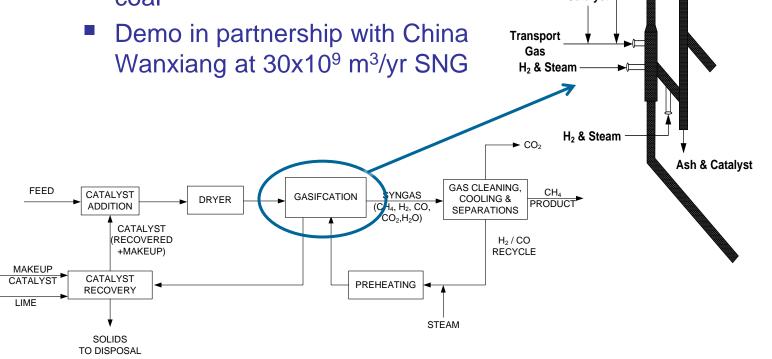
IGCC vs IGFC

Credit of "Green Electricity" = \$135/MWh

Hydrogasification

- Methane can be produced while energy balance can be maintained $C + 2H_2 = CH_4$ $\Delta H < 0$ $CO + H_2O = H_2 + CO_2$ $\Delta H < 0$ $2C + 2H_2O = CH_4 + CO_2$ $\Delta H > 0$
- No need for O₂ except small amount for any left over char conversion Reduction in auxiliary power and plant cost
- Need H₂ or H₂ + CO instead
 Gas separation & recycle
- Potential for high cold gas efficiency
- High concentration of CH₄ in syngas: 30 mol% (dry basis)
- Operation at 700 to 800°C & 70 bar No tars reported when catalyst used
- Carbon conversion

Approaching 90% for coal (much higher for biomass) Feed unconverted char to a 2nd high temperature gasifier


Catalytic Hydrogasification

Exxon

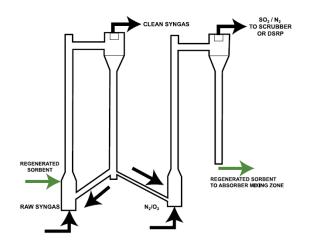
- Investigated in 1970s
- Using K₂CO₃ or KOH catalyst (15 wt % of dry coal input on K₂CO₃ basis)

GreatPoint Energy

- bluegasTM using proprietary catalyst
- Pilot testing in 2006 2007 at 1 TPD coal

То Steam Cleanup Candle Disengager Filter BFW Cyclone Particulates Riser Recycle Gas Dried Feed Catalyst

Raw Gas


Gasification – Development Requirements

Hydrogasifier

Catalyst recovery

Biomass Feeding

- Friability issue for certain feedstocks
- Pretreatment to increase friability
- Warm gas cleanup
 - Better attrition properties for regenerable beds
 - Reactor design for hot solids transfer
- Warm gas CO₂ capture
 - Sorption
 - High temperature membranes

Fuel Cell – Electrochemical Device

Fuel cell energy conversion device: "chemical energy" \rightarrow work + thermal energy $H_2 \rightarrow$ Load Temperature change O_2 reduction Load Small Electrical work (Air)

Reduction & oxidation separated in space:

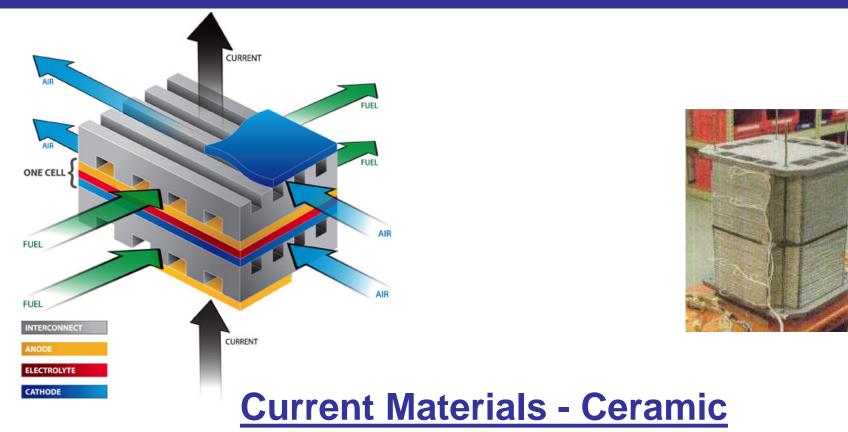
Cathode:
$$\frac{1}{2}O_2 + 2e^- \rightarrow O^=$$

Anode: $H_2 + O^= \rightarrow H_2O + 2e^-$

Ordered electron flow – useful work

CH₄ fuel - Convert thermal energy to chemical energy: Reformation: CH₄ + H₂O \rightarrow CO + 3 H₂ \triangle H > 0

SOFCs Currently Small

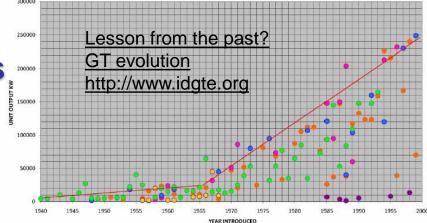

Siemens Energy

- Limited to mostly kW class
- Need 100 MW class

Planar SOFC Stack

- Electrolyte: Yttria-stabilized zirconia (YSZ)
- Cathode: Lanthanum manganite (LaMnO₃) doped with Ca or Sr
- Anode: Nickel-YSZ cermet

Source: http://www.netl.doe.gov/technologies/coalpower/fuelcells/seca/primer/cell.html


SOFC – Development Requirements (1)

SCALE

COSTS

Currently limited to mostly kW class

- Developed for space program in 1960s & 1970s
 - Extremely expensive (\$600,000/kW) then
- Significant efforts in past 3 decades
 - Develop more affordable designs for stationary power applications
 - But progress slow
- Solid State Energy Conversion Alliance (SECA) target
 - \$700/kW_e
- Cheaper materials operating at lower temperatures
- Ionic & not just electronic conductors for electrodes
- Improved fabrication techniques

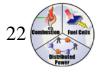
SOFC - Development Requirements (2)

Robust operation

- Off-design
- Dynamic performance
 - Management of internal thermal stresses for fast ramping capability

• Pressurized fuel cell (~10 bar)

- Controllability more complex
 - Sudden depressurization of fuel cell a concern


SOFC as reformer

- Heat management
- Some other research areas
 - Materials less susceptible to fuel & air contaminants
 - Turbo-machinery & BOP controls
 - High efficiency inversion & conversion power electronics
 - Improved interconnects, seals, manifolding

Synthesis Unit - Development Requirements

- Stability issues of synthesis unit for fast ramping capability
- Part-load operation of synthesis unit
- Reactor design / separation processes
 / systems integration

