The innovation engine for new materials

Molecule meets MOF: bridging the gap between organic and inorganic electronic materials

Seminar Group: 

Speaker: 

Alec Talin

Address: 

Sandia National Laboratories
Livermore, CA

Date: 

Friday, December 5, 2014 - 4:00pm

Location: 

ESB 1001

Host: 

Professor Chris Palmstrom

Conducting organic polymers are highly attractive electronic materials, having the advantages of low-cost fabrication routes, tunable electronic properties, and mechanical flexibility. Unfortunately, their charge mobility relative to traditional inorganic semiconductors is poor due in part to microstructural disorder. A new class of synthetically flexible, crystalline materials known as Metal-Organic Frameworks (MOFs) could solve the disorder problem, providing within a single material the highly ordered structure of inorganic conductors with the tunable properties and low cost of organics. MOFs are inorganic-organic hybrids consisting of metal cations linked by organic groups such as carboxylates and amines, forming a crystalline, nanoporous structure. With record-setting surface areas (>7000 m2/g), they are ideal for applications such as CO2 sequestration and catalysis. While efforts to develop MOFs for these applications made major strides over the past decade, electrically conducting frameworks would open up a host of other promising avenues, such as novel electronic devices, photovoltaics, supercapacitors, and electrocatalysts.  Recently, we discovered that infiltrating the pores of the copper-containing MOF HKUST-1 with redox-active guest molecules, such as TCNQ (7,7,8,8-tetracyanoquinododimethane), increases the electrical conductivity of thin film devices by as much as seven orders of magnitude [1]. This emergent property results from a donor-bridge-acceptor geometry, in which TCNQ binds to two Cu(II) dimer units within the MOF pore. In my presentation I will describe the synthesis and characterization of Molecule@MOF materials. Coupling these results with first-principles electronic structure calculations demonstrates that conductivity occurs via a hopping mechanism facilitated by the bridging TCNQ. From these results it will be clear that Molecule@MOF represents a novel class of electronic materials with the potential to bridge the properties gap between inorganic and organic conductors, providing a high degree of electronic tailorability combined with long-range order for high charge mobility.

[1] A. A. Talin, A. Centrone, A. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, F. Léonard, M. D. Allendorf, Science 343, 66 (2014).