ERRATA

Inverted Order of Acceptor and Donor Levels of Monatomic Hydrogen in Silicon [Phys. Rev. Lett. 73, 130 (1994)]

N. M. Johnson, C. Herring, and Chris G. Van de Walle

A correction factor, which affects the location of the hydrogen acceptor level, was omitted in the use of the data of Fig. 2 to determine the rate r_{0-} at which H^0 captures an electron. If the Fermi level ε_F during the flooding pulse lies well above the hydrogen donor level ε_D , no correction is needed, as all the hydrogen is quickly converted to H^0 and remains as such until further conversion to H^- (or a reverse bias is reapplied). However, if $\varepsilon_F \le \varepsilon_D$, the rapid equilibration of H^0 and H^+ implies that during the flooding only a fraction

$$F_0 = \left\{ \frac{1}{2} \exp[(\varepsilon_D - \varepsilon_F)/kT] + 1 \right\}^{-1}$$

of the hydrogen not yet converted to H⁻ will at any instant be H⁰, where k is Boltzmann's constant and T is the absolute temperature. Thus, the r_{0-} to be used in Eq. (4) should not be τ_c^{-1} , where τ_c is the capture time measured in Fig. 2, but rather should be $(F_0\tau_c)^{-1}$. While for $F_0\approx 1$ the calculated ε_A does not depend on ε_D , in the opposite limit of $F_0\ll 1$ it is $\varepsilon_A+\varepsilon_D$ that becomes independent of ε_D . For the measurement conditions of Fig. 2 (i.e., average electron concentration of 5.6×10^{15} cm⁻³ and T=310 K) and the quoted value for ε_D of ~ 0.36 eV above midgap (which may be slightly too low for the zero-electric-field value), F_0 is 0.15 and the corrected ε_A is ~ 0.05 eV below midgap, rather than just at midgap.

Renormalization Group Theory for Global Asymptotic Analysis [Phys. Rev. Lett. 73, 1311 (1994)]

Lin-Yuan Chen, Nigel Goldenfeld, and Y. Oono

A misprint occurred in Eq. (5), which should read

$$y(t) = R(t)\sin(t) + (\epsilon/96)R(t)^{3}\left[\cos(3t) - \cos(t)\right] + O(\epsilon^{2}).$$

We thank A. Wirth for bringing this to our attention.