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Existing calculations of diffusion coefficients in solids have so far relied on empirical potentials and/or
dynamical simulations, both of which entail important limitations. We present a practical approach that
is based on rate theory and allows the calculation of temperature-dependent diffusion coefficients from
static first-principles calculations. Results for hydrogen in silicon are in excellent agreement with recent
first-principles dynamical calculations at high temperatures and with experiment. They further eluci-
date the nature of diffusion pathways and anharmonic effects.
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The reliable calculation of diffusion coefficients in
solids has been a long-standing quest driven by both
technological needs and the desire to establish the dom-
inant microscopic mechanisms. In the last fifteen years,
starting with the pioneering work of Bennett,! major
strides have been achieved in calculating diffusion con-
stants of model solids, defined by a set of empirical in-
teratomic potentials.>™* The results of these calculations
are usually applicable to metals. Quantitative calcula-
tions for real materials are, however, hampered by
difficulties in constructing interatomic potentials. These
methods have not been used for covalent solids, where
significantly more complex potentials are necessary.

In the last few years, the advent of reliable first-
principles total-energy calculations for defects in semi-
conductors has led to calculations of diffusion activation

energies.>™® In such work, the diffusion coefficient D is
expressed as
D=Doexp(—Q/kpT), ¢))

where Q is the activation energy along a particular path,
corresponding to a particular saddle point. The relative
contributions of various paths or mechanisms could not
be assessed, however, because the corresponding preex-
ponentials Dy, containing entropy terms, could not be
calculated.

More recently, first-principles dynamical simulations
of defects in semiconductors at finite temperatures have
been used to obtain diffusion coefficients.’® These truly
impressive calculations literally follow the thermal mo-
tion of a H atom in a Si lattice with a full quantum-
mechanical description of the changing electronic system
and a classical description of the atomic motion. They
are, however, limited to systems with small activation en-
ergies and, even then, to high temperatures. Otherwise,
the time evolution of the system is too slow for practical
calculations.

In this paper we develop and implement a practical
framework for the first-principles calculation of diffusion
constants. The approach is based on existing rate-theory

formalisms'~*'%"'2 and invokes a set of well-defined ap-

proximations. Since the technique does not involve
time-dependent simulations, it is applicable to a wide
range of activation energies and temperatures. We re-
port results for H in Si and find them to be in excellent
agreement with the recent fully dynamical calculations
of Buda er al.*® in the temperature range accessible by
the latter. Our calculations, performed for a wide tem-
perature range, show that the effective activation energy
changes at high temperatures because of anharmonic
terms. The nature of diffusion pathways is elucidated.

The central quantity of the theory is the free energy
F(x,T) determined with the impurity frozen at x and at
temperature 7. Once this quantity is known, one deter-
mines the values X; of x for which F is a minimum. A
Wigner-Seitz-like construction then divides all space into
cells centered at the stable sites X,;. The diffusion con-
stant is given rigorously by

D=Q—ZIXJ—X,-|2n,-F,-j, (2)
W

where n; is the probability for the impurity to be at a
certain site X; and I';; is the jump rate from site / to site
J. The jump rate can be decomposed into the directional
flux T’} through a saddle surface separating sites X; and
X, and an efficiency factor which accounts for immedi-
ate return jumps and correlated multiple jumps.''!
Transition-state theory'? gives an exact expression for
F,oj:
1/2
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Here u is the reduced mass of the diffusing particle,
which depends on the choice of the relative coordinate
x,'* and P is the probability for the impurity to be at
the saddle surface. The latter is given by

fsu.dsz(X)
g fyld3XP(X) ’

where P(x) is the probability that the impurity is at x.

(4)
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Here the two-dimensional integral is performed over the saddle surface S;; separating cells i and j, and the three-
dimensional integral is performed over the cell V; at X,. The probability distribution is given by

P(x)=Z "'expl—F(x,T)/ksT],

(5)

where Z is a normalization constant and F(x,T) is the free energy of the system with the impurity constrained to a po-

sition x. This free energy is in general given by

F(x,T)= —kgﬂnx;“““"qu 3”"5[x—x(q)]exp[

where x(q) represents the functional dependence of the
impurity’s position relative to the host-atom positions,
V(q) is the potential energy depending on the positions
q=(qy,...,qn) of all N atoms in the crystal, and A7 is
the thermal de Broglie wavelength. The total transla-
tional degree of freedom has been excluded in the in-
tegration.

The above formalism is exact. For a practical im-
plementation we introduce only two approximations.
First, we take ' =T, setting the so-called efficiency fac-
tor equal to 1. Efficiency factors have been studied for
model solids and have in many cases been found to
change the results for the diffusion constant by only a
small fraction.">'"!* The second approximation of this
approach is the way we calculate F(x,7’). We note that

T
F(x,T) =F(x,0) — fo dTS(x,T), )

where S(x,7T) is the entropy of the system with the im-
purity fixed at x. We propose to approximate F(x,T)
by its value at T=0. The free energy F(x,0) is the total
energy obtained with the impurity at x and all other
atoms relaxed. This approximation corresponds to the
assumption that the vibrational frequencies of the host
atoms depend only weakly on the position of the impuri-
ty, when the latter is fixed. The second term in Eq. (7)
can actually be calculated in a rather straightforward
but time-consuming manner in the local harmonic ap-
proximation.'> Such calculations (to be discussed
below) show, however, that this contribution to F(x,T)
is small. In many cases of interest this term can there-
fore be neglected, making the method very practical.

The present approach reduces the many-body problem
of treating the diffusing particle together with all the
particles in the embedding crystal to the problem of
diffusion of a single particle in a three-dimensional
effective potential. This effective potential has the full
space-group symmetry of the crystal, and can, therefore,
be expanded in symmetrized plane waves.” Thus, calcu-
lations of the total energy at only a few selected sites can
be used to determine an analytic form for the complete
effective potential.

The total-energy surface, which we will use to extract
the diffusion constants for H™, has been obtained from
state-of-the-art electronic structure calculations using
the local-density approximation and ab initio norm-
conserving pseudopotentials.” The proton is treated, like

1402

— ._I_V(q)

o T , (6)

[

all other nuclei, as a classical particle. The impurity is
placed in a supercell with 32 Si atoms and the atomic
positions up to second-nearest neighbors are relaxed.
The total energy is calculated for eight inequivalent posi-
tions of the impurity. These values have been used to
determine the expansion coefficients for a suitable set of
symmetrized plane waves. The resulting analytical ex-
pression provides the free-energy surface F(x,0) from
which we calculate diffusion coefficients. The relevant
total-energy surfaces have been published in Ref. 7.

In order to test the approximation of neglecting the
host-atom entropy [second term of Eq. (7)1, we calculat-
ed the vibrational frequencies of the host atoms. Even
though this can, in principle, be done with ab initio cal-
culations, we have used here a generalized Keating po-
tential'¢ for the Si-Si interactions and a suitably chosen
Morse potential for the H-Si interactions.!” The result-
ing entropy, obtained within the local harmonic approxi-
mation, was found to differ by ~1kp between the most
dissimilar sites [e.g., the bond-center (BC) and
tetrahedral sites] and significantly less between rather
similar sites. At 1000 K these differences translate into
corrections of less than ~0.1 eV for F(x,7). That is
precisely the level of accuracy with which F(x,0) can be
calculated from first principles.” We expect this to be a
conservative estimate for other impurities as well be-
cause of the relatively large relaxations of neighboring Si
atoms when H is at the BC position. Thus a time-
consuming calculation of this term from first principles is
not warranted. We did test, however, the effect of 0.1-
eV uncertainty in F(x,0) on the final diffusion
coefficients and results are given below.

For the calculation of the diffusion coefficient, we first
determine the minima X; in the total-energy surface.
These form the so-called diffusion-site lattice. A
Wigner-Seitz-like construction then yields the volumes
Vi, related to the sites X;, and the saddle surfaces S;; as
the faces of the Wigner-Seitz polyhedra. For the posi-
tively charged state of H there exists only one set of
equivalent minima X;. These lie in a disk-shaped region
of almost degenerate sites centered at the BC position. '®
H atoms can hop from bond to bond via the so-called C
site, which is located midway between two second-
nearest Si neighbors. The Wigner-Seitz cell of the
diffusion-site lattice formed by the BC sites has the
shape of a rhombohedron (see Fig. 1). Every face con-
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FIG. 1. Wigner-Seitz cell for the diffusion-site lattice of H*
in Si. All six faces are equivalent. The corners of the cell are
formed by six tetrahedral interstitial sites and two atomic sites.
C sites are located in the center of the faces. The hexagonal
interstitial sites lie on the edges of the cell, midway between
two neighboring tetrahedral interstitial sites.

tains one C site as the only saddle point. The occupation
and the saddle-surface probability are obtained from in-
tegrals over the Wigner-Seitz polyhedron and one of its
faces, respectively.

Our results for the diffusion constant are shown in Fig.
2. They agree with the theoretical results of Buda et
al.*® within their error bars, and with the experimental
results of van Wieringen and Warmoltz'® within a factor
of 3, which is within the expectations for the accuracy of
the method and the accuracy of the measurements.

The number of distinct diffusion pathways can always
be obtained from the number of inequivalent saddle
points on the saddle surface. Their relative contribution
can be obtained from partial integrals over the saddle
surface. The total-energy surface of H™ in Si has only
equivalent minima and only identical saddle points.
Thus, according to our definition, we have only one path-
way. At higher temperatures, however, the impurity
need not pass through total-energy minima or saddle
points, giving rise to a variety of trajectories. For exam-
ple, the impurity may diffuse by cutting through bonds
or it may merely “rub” against the bond without actual-
ly crossing it. Anharmonic effects in the effective poten-
tial, which are evident from the curvature in the Ar-
rhenius plot of Fig. 2, enhance the possibility of trajec-
tories that avoid the bond region at high temperatures.

Our approach does not seek to determine the actual
trajectories. Instead, it determines the diffusion coeffi-
cient as an integral over all possible trajectories. The ap-
proach assumes implicitly that the motion of H is ran-
domized after each saddle-surface crossing. Thus, it
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FIG. 2. Diffusion coefficients for H™ in ¢-Si as a function of
inverse temperature. Solid line: present calculation for H¥;
solid circles, theoretical results of Buda et al. (Ref. 9); dotted
line: D=9.41x10 "*expl(—0.48 eV)/ksT] as obtained by van
Wieringen and Warmoltz (Ref. 19) (the solid part indicates
the actual temperature range of the experiments).

neglects the effect of dynamical correlations, i.e., trajec-
tories in which successive saddle-surface crossings occur
in a correlated fashion. In contrast, Buda er al. carry
out a time integral over the trajectories that actually
occur. The two “paths” identified by them are, in our
terminology, two dynamical trajectories. The excellent
agreement between the results in Ref. 9(a) and ours
seems to indicate that dynamical correlations, even
though extremely important for the time evolution of the
system, do not substantially affect the value for the
diffusion constant. This result is consistent with earlier
findings. '

The accuracy of our calculation depends of course on
the accuracy of the energy surface used as input. The
error bar is related to the accuracy of the individual
total-energy calculations, as well as to the number of cal-
culated points used for the analytic representation of the
energy surface. Both contributions have been estimated
to be on the order of 0.1 eV.” As we saw above, the
correction from the host-atom entropy is even smaller.
In order to see how sensitive our results are to these un-
certainties, we have artificially introduced changes of the
order of 0.1 eV in the regions where they count the most,
i.e., the stable site and the saddle surface. The resulting
changes in the activation barrier are comparable to the
changes in the total-energy surface. The preexponential,
obtained from the Arrhenius plot at high temperatures,
however, is surprisingly insensitive and varies only by a
factor of 5. This is understandable because at high tem-
peratures the impurity explores a large region of phase
space and is therefore insensitive to small local changes
in the total-energy surface.

In conclusion, we have shown that diffusion constants
can be calculated with considerable accuracy from static
total-energy calculations. The technique is applicable to
systems with low or high activation barriers and is valid
over a wide temperature range. We have applied this
approach to the calculation of the diffusion constant of
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H in Si. Our results compare well with experiment and
recent calculations of Buda et a1.,9(") which describe the
time evolution of all particles without approximations.
This work was supported in part by the Office of Na-
val Research Contract No. N00014-84-0396. We are
grateful to R. Car and J. Tersoff for helpful discussions.

IC. H. Bennett, in Diffusion in Solids: Recent Develop-
ments, edited by A. S. Nowick and J. J. Burton (Academic,
New York, 1975), p. 73.

2G. Jacucci, in Diffusion in Crystalline Solids, edited by G.
E. Murch and A. S. Nowick (Academic, New York, 1984), p.
429.

3M. J. Gillan, J. H. Harding, and R.-J. Tarento, J. Phys. C
20, 2331 (1987).

4A. M. Stoneham, Phys. Scr. T25, 17 (1989).

SR. Car, P. J. Kelly, A. Oshiyama, and S. T. Pantelides,
Phys. Rev. Lett. 52, 1814 (1984); 54, 360 (1985).

6K. C. Pandey, Phys. Rev. Lett. 57, 2287 (1986).

7C. G. Van de Walle, Y. Bar-Yam, and S. T. Pantelides,
Phys. Rev. Lett. 60, 2761 (1988); C. G. Van de Walle, P. J. H.
Denteneer, Y. Bar-Yam, and S. T. Pantelides, Phys. Rev. B 39,
10791 (1989).

8C. S. Nichols, C. G. Van de Walle, and S. T. Pantelides,
Phys. Rev. Lett. 62, 1049 (1989).

9(a) F. Buda, G. L. Chiarotti, R. Car, and M. Parinello,
Phys. Rev. Lett. 63, 294 (1989; (b) (private communication).

1404

10D, Chandler, J. Chem. Phys. 68, 2959 (1977).

ITA. F. Voter, Phys. Rev. Lett. 63, 167 (1989); A. F. Voter
and J. D. Doll, J. Chem. Phys. 82, 80 (1985).

12G. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).

130ne must chose a coordinate x relative to the positions of
the host atoms in order to exclude the overall translational de-
gree of freedom. If the generalized coordinate x(q) depends
only linearly on the atomic positions q, the reduced mass u is
given by

N

1

9q, | mi

ax]zl
n—| —,

where n is the normal vector of the saddle surface.

14G. DeLorenci and G. Jacucci, Phys. Rev. B 33, 1993
(1985).

I5SR. LeSar, R. Najafabadi, and D. J. Srolovitz, Phys. Rev.
Lett. 63, 624 (1989).

16D. Vanderbilt, S. H. Taole, and S. Narasimhan, Phys. Rev.
B 40, 5657 (1989).

17p. E. Blschl, C. G. Van de Walle, and S. T. Pantelides (to
be published).

18The analytic form of the total-energy surface actually has
minima that are slightly away from the BC sites. However, the
energy difference from the BC site is too small to be resolved.
We will still refer to the BC site as the stable site, because
equilibration between those sites is too rapid to change the pic-
ture.

I9A. van Wieringen and N. Warmoltz, Physica (Utrecht) 22,
849 (1956).



