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The subjects of this paper are the proper inclusion of long-range electrostatic terms in the theory of
electronic deformation potentials, a way to include these terms by using supercells in ab initio density-
functional methods, and calculations for selected semiconductors. We describe the connection with the
heterojunction problem, and compare our values with previous model theories and with experiment.
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In 1950, Bardeen and Shockley introduced the concept
of a deformation potential to describe the interaction be-
tween electrons and acoustic phonons.! The strains in
the lattice associated with acoustic waves induce shifts in
the conduction and valence bands, which affect carrier
mobilities and were described in terms of scattering by a
deformation potential. By making the explicit assump-
tion that the potential in a region of the crystal is
uniquely related to the strain in the same region, they
showed that the deformation potentials are straightfor-
ward derivatives of the energies with respect to the
strains. This formulation has been used widely both in
analysis of experiment and in theoretical calculations of
the values for deformation potentials. >3

The subject of the present work is the role of long-
range Coulomb fields, which can qualitatively modify the
interactions of electrons with acoustic phonons. One
well-known example occurs in piezoelectric crystals,
where macroscopic electric fields must be treated explic-
itly.* A signature of the long-range nature of the in-
teraction is that it leads to scattering which is nonanalyt-
ic in the wave vector q of the phonons in the long-
wavelength (|q| — 0) limit. It is less well known that
there are long-range electrostatic contributions to the in-
teractions even in nonpiezoelectric crystals. This has
been pointed out by Tolpygo® and by Lawaetz;® however,
to our knowledge these effects have never before been
calculated in any solid.

It is important to distinguish between terms which
refer to relative energies of different electronic states,
and those that correspond to the “absolute” energy rela-
tive to some reference. Because of long-range electro-
static interactions, the energies of the electrons in any
given macroscopic region of the crystal depend not only
upon the strain in the given region, but also upon other
terms which arise from macroscopic electric fields. In
the long-wavelength limit the bands are shifted rigidly
by the field; thus the macroscopic electric fields affect the
absolute energies, but not the relative energies of the
electronic bands. The present considerations therefore
have no effect upon the definitions of, or calculational
procedures for, deformation potentials which describe

relative energies. These include deformation potentials
for band gaps, splitting of states under uniaxial strains,
ete.>’

The present work deals with aspects which are crucial
for proper consideration of effects which have been attri-
buted to the “absolute” deformation potential. For these
terms there are many disagreements and uncertainties in
the literature. For example, reported experimental
values for the conduction-band deformation potentials in
InSb range from 4 to 30 eV.® Previous theoretical work
has also shown large variations,”™!! some of them due to
implicit assumptions on the form of the long-range
terms. The problem is that the absolute energy in a crys-
tal is ill defined.'? Because of the long-range Coulomb
interactions the energy of any charged particle involves
the electrostatic potential which in turn depends on the
charge density everywhere, not just in the local region.
Thus the absolute energies of electronic states for
different strain conditions cannot be directly compared
with one another, and it is in principle impossible to
define an absolute deformation potential. Nevertheless,
for important cases with experimental consequences, one
can determine the relevant changes in electronic energies
because one can find the electrostatic potential including
all nonlocal long-range effects. We shall derive the form
for electron-acoustic phonon interactions in the present
paper.

Tolpygo® and Lawaetz® showed that the long-range
Coulomb terms can be properly described in terms of
quadrupole and octupole moments which are generated
when an atom is displaced in a crystal. In a crystal with
an inhomogeneous strain caused, for example, by an
acoustic phonon, the multipole fields can be summed and
lead to an inhomogeneous electric field. Since this field
can be shown to be proportional to the gradient of the
strain, it is allowed by symmetry for all crystal classes.
By integrating the electric field and the strain gradient
from one region of the crystal to another, one finds a
change in electrostatic potential proportional to the
change in strain. This term contributes to the change in
energy of all electronic states, along with any other
short-range contributions to the deformation potential
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described by the usual local formulations.!™ Lawaetz®
showed that the effects upon the electronic energies can
be described as the sum of an analytic part plus terms
which are nonanalytic as a function of q for |q|— 0.
The latter terms lead to a different dependence of the
energy-strain relationship as a function of direction of
propagation of the acoustic phonon q than is predicted
by local theory.!™® The former, analytic, terms may be
interpreted as absolute hydrostatic deformation poten-
tials, a; =dE;/dInQ, where E; is the energy of state i and
dInQ =d Q/Q is the fractional volume change.

In the present work we propose a way to calculate de-
formation potentials for acoustic phonons including all
long-range fields by using an approach which has proven
useful in calculations of heterojunctions.”!3!'* Hetero-
structures are characterized by spatial variations in both
the chemical composition and the strain. In particular,
strained-layer superlattices involve static strains of the
same form as the time-dependent strains produced by
acoustic phonons. The lineup of conduction and valence
bands depends on dipole shifts at the interface, which
affect the relative band positions of the two sides of the
interface. This involves exactly the same considerations
of the electrostatic fields as does the spatially varying po-
tential caused by the spatially varying strain in an acous-
tic phonon. In this study of deformation potentials we
are therefore able to make use of our theoretical develop-
ments applied previously to heterostructures. Further-
more, our understanding of both heterostructures and
deformation potentials is increased by considering them
in a unified way.

Because the absolute energy of the average potential
in an infinite crystal is ill defined,'? the electronic states
resulting from two separate calculations, corresponding
to different strain conditions, cannot be directly com-
pared with one another. The relation of the energies is
well defined only when specific boundary conditions are
introduced, which relate the potentials in both regions to
a common zero of energy. We have accomplished this
by performing calculations in which compressed and ex-
panded regions of the crystal are simultaneously present,
in a large supercell. This is similar to our previous
heterojunction calculations,'* in which the supercell con-
tained slabs of the two semiconductors that form the het-
erostructure. Here we carry out self-consistent calcula-
tions for supercells which contain two layers of the same
semiconductor in different strain conditions (one layer
uniaxially expanded by 1%, the other compressed by
1%). The interfaces are pseudomorphic, i.e., the lattice
constant in the directions parallel to the interface is kept
equal to the unstrained bulk lattice constant on both
sides. We will discuss the effects of uniaxial versus hy-
drostatic contributions to the deformation potentials
later.

It is important to establish that the supercell calcula-
tion is relevant to the problem of acoustic-phonon defor-
mation potentials. Consider a longitudinal phonon with

wave vector q along a high-symmetry direction. Planes
of atoms normal to § are displaced rigidly by amounts
which vary sinusoidally as a function of position of each
plane R; along the direction parallel to §, u;=A
xcos(gR;). The strain is given by & =@+ —u;)/
(Ri+1—R;)— —Agsin(gR;) = — | €|sin(gR;), and the
strain gradient is 8¢, = — | €| gcos(gR;). Since we con-
sider only effects linear in | e[, the sinusoidal variation
in the strain gradient §¢; can be considered as a superpo-
sition of the strain gradients at each plane i. In our ap-
proach we calculate the effect of a strain gradient at one
plane, i.e., a constant strain for planes j=<i and a
different constant strain for planes j=i+1. Any
longitudinal-acoustic wave with q perpendicular to the
planes can be formed as a linear combination of strain
gradients at each plane.

It should be emphasized that by making this choice,
we are not making a strain gradient more abrupt than an
acoustic wave. In fact, we are properly treating the vari-
ations on an atomic scale that occur in an acoustic pho-
non. The long-wavelength limit is a superposition of
strain gradients §¢; which vary slowly as a function of i.
Therefore, the effect of the strain gradient can be used to
describe the deformation potential due to any phonon
with direction §. Each different direction § in principle
requires a separate calculation with different orientation
of the planes. We will describe results for three such
directions.

Our calculations are based on the local-density-
functional method,' using ab initio pseudopotentials.'¢
Details of the computations, which are very similar to
those performed in our earlier work on heterojunction
band offsets, may be found in Ref. 14. Separate bulk
calculations on strained materials provide information on
the variations of individual band edges with respect to
the reference potential when strain is applied. The
strain-induced shift in the reference potential itself is
given by the self-consistent potential in the supercell,
provided the interfaces between differently strained re-
gions are far enough apart. Combining the information,
we can derive band-edge deformation potentials for
valence and conductions bands.

The most extensive calculations were performed for Si.
We examined supercells with eight and twelve atoms,
strained along (001), (110), or (111) directions. The en-
ergy cutoff was 6 Ry, and three or four special points in
the irreducible part of the Brillouin zone were used for
reciprocal-space intergration. To test convergence, we
increased the cutoff up to 11 Ry, and found that the cal-
culated value of the deformation potential at 6 Ry is
within 0.2 eV of the converged result. We also increased
the number of special points from three to ten and found
an effect smaller than 0.2 eV. For the (001) supercell,
we changed the number of atoms from eight to twelve,
and found a change in the deformation potential of less
than 0.2 eV. This shows that our values are converged to
this accuracy with respect to the number of atoms in the
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supercell, and that the transition in the potential between
regions subject to different strains occurs on a length of
one or two atomic layers around the interface. For the
(111) and (110) orientations, the off-diagonal com-
ponents of the strain in the supercell give rise to internal
displacements of the atoms;'’ we have included these
displacements in each of the strained layers using the
internal displacement parameter {=0.53 that was de-
rived for bulk Si from theoretical calculations that used
the same methods as the present study.® Uncertainties in
the value of the ¢, or deviations from the displacement
pattern near the interface, have only a small effect on the
calculated potential lineup. As a check, setting {=0in a
calculation for the (111) orientation produced a change
in a, of ~1 eV, bringing it closer to the value for the
(001) orientation, where internal displacements are ab-
sent.

The bulk calculations for strained materials were per-
formed with a 24-Ry cutoff, and two special points in the
irreducible part of the zone. Only hydrostatic com-
ponents of the strain were applied, and the changes in
the band structure were derived from calculations in
which the number of reciprocal-space vectors in the
plane-wave basis was kept constant. In terms of intrinsic
accuracy of the methods, previous comparisons with ex-
periment indicate that the local-density approximation
works well for the problem at hand.*”!'* Based on all of
our convergence tests, we put a rather conservative nu-
merical error bar of £ 1 eV on our calculated deforma-
tion potentials (note that this requires a calculation of
the band lineups to an accuracy of better than 0.02 eV,
for a 2% strain). This error bar is quite small compared
to certain relevant deformation potentials (e.g., those for
direct band gaps), and much smaller than the range of
(theoretical and experimental) values suggested before.

In Table I we give our calculated values for derivatives
of the valence- and conduction-band edges dE./dInQ
and dE./dInQ. These include both analytic terms
(which are the same for all orientations and can be
identified with the hydrostatic deformation potentials a,
and a.) and nonanalytic terms (which depend upon
orientation).® As a check, Table I also lists values for

the band-gap deformation potential obtained by sub-
tracting the valence-band from the conduction-band
values; the results are orientation independent and agree
well with experimental values. The orientation listed in
the table refers to the supercell that was used in the
derivation of the potential lineup; all bulk calculations
were performed for hydrostatic strains only. Effects of
uniaxial strains on the band structure, which lead to
splitting of degenerate bands, are well known and not ad-
dressed here. However, because the potential lineups are
determined from supercell calculations for different
orientations, the nonanalytic contributions to the defor-
mation potential discussed above lead to different values
for (001), (110), and (111). In principle, the nonanalyt-
ic terms [corresponding to the “C; term” in Ref. 6, Egs.
(3.17) and (4.4)] can be explicitly extracted. In prac-
tice, however, these terms are small in magnitude;
Lawaetz® estimated |C,| <1 eV. An explicit deter-
mination is therefore very difficult, due to numerical un-
certainties which are especially hard to estimate when
comparing calculations for very different geometries like
the present supercells. The smallness of the nonanalytic
contributions is illustrated by the fact that the deforma-
tion potential values for different supercell orientations
are very similar (to within the numerical error bar). We
therefore do not pursue the determination of the nonana-
lytic contribution here, and suggest that the present
values be interpreted as representative of hydrostatic de-
formation potentials.

We thus find that, to within the error limits, the hy-
drostatic component is dominant in the deformation po-
tential, and the dependence on direction § is weak. That
is, the nonanalytic terms of Lawaetz® are smaller than
our error limits. If the nonanalytic terms were negligi-
ble, then in fact the deformation potential could be re-
garded as absolute, i.e., having the same form as in the
usual Bardeen-Shockley theory, with only its magnitude
affected by considerations of the electrostatic fields. This
is exactly parallel to our conclusion for many heterojunc-
tion interfaces: Because of orientation independence and
transitivity the bands can be considered to be lined up in
terms of a locally defined reference energy. Further

TABLE I. Band-edge deformation potentials for various semiconductors, obtained from
self-consistent interface calculations. Listed are values of dE,/dInQ for the valence band,
dE./dInQ for the lowest conduction band, and their difference a. Also given are experimental
values for the band-gap deformation potential a. All values are in eV.

. . dE, dE,
Orientation a6 e a a (expt.)
Si (001) 1.3 3.1 1.7 1.5+0.32
(110) 0.4 2.1
arn 3.1 4.8
Ge (001) 1.8 —1.0 —2.8 —2.0%0.5°
GaAs (110) 1.1 —7.3 —8.3 —8.4+0.9°

#Reference 18.
®Reference 19.
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studies with smaller uncertainties would be needed to
identify the nonanalytic terms of Lawaetz.®

Finally, we turn to a comparison of our values with
model theories and with experiment. The problem of as-
sociating a reference energy with an infinite crystal can
also be addressed within a model theory, eliminating the
need for self-consistent interface calculations. The
“model-solid” theory developed by the present authors is
described in detail elsewhere,'*?! with examples for
many different semiconductors. For the cases listed in
Table I, that model theory is within 1 eV of the self-
consistent results. A general condition from the values
in Ref. 21 is that the valence-band deformation poten-
tials are all small compared to the deformation potentials
for the direct gap.

Vergés et al.'' used self-consistent linear muffin-tin-
orbital (LMTO) calculations for bulk solids to derive de-
formation potentials. The zero of energy which is impli-
cit in the atomic-sphere approximation was chosen as a
reference to compare bulk calculations at different
volumes. Their values differ from the present work by
more than 7 eV. More recently, it was argued that
screening needs to be included in the previous ap-
proach,?? and Cardona and Christensen® proposed a
model theory to calculate these effects. This substantial-
ly improves the agreement with the present work.

Experimental determinations of absolute deformation
potentials have been quite controversial. Measurements
are indirect, and require a significant amount of analysis,
interpretation, and assumptions. A discussion of experi-
mental values and techniques is included in Refs. 9 and
21. Here we only mention some of the more recent and
reliable values. From mobility measurements on high-
purity GaAs, the value for |a.| is found to be ~7 eV.??
To our knowledge, this is the only class of measurements
in which the quantity of interest can be clearly identified
with the deformation potential discussed in this paper. A
second class of measurements is based on the use of
transition-metal impurity levels as reference levels in
band-structure lineups. Nolte et al.?* found values of
a.=—9.3 eV for GaAs and 2.4 eV for Si. A third class
of measurements relies on the effects of heavy doping on
the lattice constant. Cargill et al.,? using x-ray scatter-
ing and extended x-ray-absorption fine-structure (EX-
AFS) measurements, separated the “size effect” from
the electronic effect, and found a.=3.3%£0.7 eV for Si.
All of these values are in reasonable agreement with the
present first-principles calculations.

In conclusion, we have reported the first ab initio
determination of “absolute” deformation potentials,
which takes into account the important long-range elec-
trostatic effects. Our values are in good agreement with
recent experiments.
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