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Relaxation phenomena in disordered systems are often described by stretched exponentials; such behavior
has traditionally been explained by invoking statistical distributions. In hydrogenated amorphous silicon, the
relaxation has been associated with dispersive diffusion of hydrogen, related to a distribution of energies for
trap states and barrier heights. Here we show that invoking such energy distributions is unnecessary; a treat-
ment of hydrogen motion which includes retrapping leads to a functional form of the decay curve which
closely resembles a stretched exponential, and provides an excellent fit to experimental data. The implications
of the new microscopic model are discussed.

Stretched-exponential relaxation,1 which is described by a
time dependence

X5X0exp@2~ t/t!b#, ~1!

is commonly observed in disordered systems. Traditionally
this type of relaxation has been modeled by invoking statis-
tical distributions.2,3 In hydrogenated amorphous Si
(a-Si:H!, for instance, the relaxation has been attributed to
the motion of hydrogen,4 which was found to exhibit time-
dependent diffusion. The dispersive diffusion was associated
with the presence of a distribution of activation energies for
motion in the amorphous network~as opposed to a single
activation energy in a crystal!. While this phenomenological
description is consistent with the observations, to our knowl-
edge no direct evidence exists to support the assumptions
about the microscopics of the process.

In this paper we offer an alternative, simple explanation
for the observed relaxation. We describe the approach in the
context of hydrogenated amorphous silicon, but its applica-
bility may be more general. We will show that our model
provides a fit to experimental data which is at least as good
as the traditional stretched exponential@Eq. ~1!#. We thus
conclude that it isnot necessaryto invoke statistical distibu-
tions to explain stretched-exponential decay.

Relaxation processes ina-Si:H are governed by hydrogen
being released fromtrap sites.4 An initial high concentration
of H in these traps may be generated, for instance, by a
quenching process. While hydrogen resides in the traps, cer-
tain measurable quantities~for instance, the spin density!
have an enhanced value. As H is released from the traps, this
value decays. It was observed early on that this decay could
not be described by a regular exponential function; however,
the stretched-exponential form@Eq. ~1!# provides a good fit.
The hydrogen that is released from the traps returns to a
lower-energy state, which we label thereservoir. In the tra-
ditional explanation of stretched-exponential behavior, the
functional form of the decay has been attributed to the fact
that, in an amorphous material, the energies of the trap states
and of the reservoir are not sharp energy levels, but exhibit a
distribution. While the existence of such energy distributions
is plausible in principle, to our knowledge no experimental
or theoretical information is available to quantify the con-
cept.

In the model proposed in this paper, there is no need to
invoke a distribution of energy levels~although broadening
of levels may still be present!. We assume that there is a
single energy level corresponding to the trap state~denoted
T), and a single~lower-lying! level corresponding to the res-
ervoir ~denotedR) ~see Fig. 1!. In order to describe the de-
cay, it is important to consider the microscopic aspects of the
release process. Figure 1 schematically displays energy as a
function of the spatial coordinate of the H atom. A potential
well around a trapped state is shown, and also a potential
well around a reservoir state. In addition, the figure illus-
trates that after the H escapes from the trapped state, it has to
move some distance through the material before it finds a
reservoir state, where it gets caught. This migration through
the crystal proceeds through interstitial sites~labeledI ), with
intervening saddle points. The interstitial diffusion proceeds
with a migration barrier in the range of 0.2–0.5 eV,5 and is
therefore not a rate-limiting step.

Previous considerations of decay processes have ad-
dressed the transition betweenT states andR states, without
regard for the intermediate interstitial states; however, such a
treatment neglects an important aspect of the decay process,
namely the fact that a hydrogen that is released from a trap
can beretrappedat the same or at another trap site. We show
here that by writing down the reactions describing the trap-
ping and release of hydrogen, and after some approxima-
tions, one arrives at a functional form which contains only

FIG. 1. Schematic diagram depicting energy as a function of
position of hydrogen in the material, for various configurations of
the impurity. As explained in the text,R refers to the ground state
~‘‘reservoir’’ !, T to the trap state, andI to the interstitial hydrogen
which diffuses through the crystal.
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two parameters and turns out to behave much like the tradi-
tional stretched exponential. The difference, however, is that
the parameters can now be directly associated with the rates
of various microscopic processes, without having to make
any assumptions about energy distributions. The quality of
the fit will be illustrated with examples from the field of
amorphous silicon. We stress, however, that the applicability
of this model should not be limited to the specific case of
amorphous silicon, or of hydrogen release and trapping.

The concentration of sites available for trapping hydrogen
is labeledNT , and the actual concentration of H atoms in
these sites is denoted@T#. NR and@R# denote the correspond-
ing quantities for the reservoir.@ I # stands for the number of
H atoms in interstitial sites. The reaction describing the re-
lease and trapping of H atT sites is

d@T#

dt
52nT@T#1sT@ I #~NT2@T# !, ~2!

where the first term represents the release of H from the
traps, with a rate constantnT , and the second term describes
trapping, with a capture parametersT ; (NT2@T#) is the
number of unoccupied trap sites.

Similarly, the reaction describing the release and trapping
of hydrogen at the reservoir can be written as

d@R#

dt
52nR@R#1sR@ I #~NR2@R# !. ~3!

Here we have assumed that the capture of hydrogen in a
reservoir state is a unimolecular process; this is true, for
instance, when the reservoir state corresponds to H atoms
bound to Si dangling bonds. If the reservoir consisted of H2
molecules, the trapping process would contain a quadratic
term. The resulting equations would become slightly more
complicated, but the qualitative conclusion~namely, that the
functional form of the decay closely resembles a stretched
exponential! remains unaltered.6

The total number of H atoms in the system is constant, of
course

@T#1@ I #1@R#5Htot . ~4!

The basic equations~2!, ~3!, and ~4! are all we need to
derive our conclusions. These conclusions are most easily
observed if analytical solutions can be obtained, which is
possible only if some simplifying assumptions are made.
First we discuss two assumptions which will hold through
the remainder of this paper.

Assumption I: The reaction described by Eq.~2! proceeds
much faster than the reaction involving the reservoir@Eq.
~3!#. On the time scale and for the temperatures of interest,
dynamic equilibration between the@T# and@ I # states is then
obtained, andd@T#/dt50, leading to

@ I #5
nT@T#

sT~NT2@T# !
. ~5!

Assumption II: @ I #!@T# ~as well as@ I #!@R#). This as-
sumption is well satisfied for the example under discussion,
since isolated interstitial hydrogen has a low solubility~see
Ref. 7!.

Experimental observations consist of measuring a quan-
tity which is related to the number of H atoms which have
been excited out of the ground state~i.e., the reservoir!. If we
label the experimentally observed quantityX, then

X5@T#1@ I #'@T#. ~6!

Note that, in the case where the reservoir consists of hydro-
gen atoms in Si-H bonds,X also corresponds to the change
in the spin density due to the dangling bonds which are gen-
erated when H is excited out of Si-H bonds. Using assump-
tion II and Eq.~6!, Eq. ~5! becomes

@ I #5
nTX

sT~NT2X!
. ~7!

Equation~3! then leads to, using Eqs.~4!, ~6! and ~7!

dX

dt
5nR~Htot2X!2sR

nTX

sT~NT2X!
~NR2Htot1X!. ~8!

We will come back to considering Eq.~8! in full later. A
great deal of insight can be gained, however, by making
some additional assumptions:

Assumption III: At the measurement temperature, no H
atoms can escape from the reservoir. This situation may cor-
respond to a quenching experiment, where the system is first
heated to allow a measurable number of H atoms to escape
from the reservoir and get trapped atT states, and then
quenched to a lower temperature, at which no further escape
from the reservoir is possible; the dynamics then consist of
hydrogen being released from trap states, possibly being re-
trapped, and finally disappearing into the reservoir. Assump-
tion III corresponds to neglecting the first term on the right-
hand side in Eqs.~3! and~8!. A further simplification can be
introduced:

Assumption IV: @R#!NR ; i.e., the number of available
sites in the reservoir is much larger than the number of H
atoms.

Using assumptions III and IV, Eq.~8! becomes

dX

dt
52sR

nTX

sT~NT2X!
NR52r

X

NT2X
, ~9!

where

r5
sRNRnT

sT
. ~10!

Thanks to our simplifying assumptions, we have arrived at a
differential equation that can be integrated analytically. If we
write ~9! as

dt52
~NT2X!

rX
dX ~11!

and integrate both sides, we obtain

t52
NT

r
ln
X

X0
1
X0

r S XX0
21D52t8ln

X

X0
1gS XX0

21D ,
~12!

where we have chosen the initial conditions such that at
t50, X5X0 , and introduced the notation
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t85
NT

r
5
NT

NR

sT

sR

1

nT
,g5

X0

r
. ~13!

Note that these relationships imply thatg/t85X0 /NT ; since
X0,NT , it follows thatg,t8. If X0!NT , theng!t8, and
the decay curve will closely resemble a regular exponential;
indeed, in the limitg50 Eq.~12! reduces to a regular expo-
nential. The deviation from the regular exponential thus oc-
curs for cases whereX0 ~andX) are of the order ofNT , i.e.,
if there is a significant population of the available trapping
sites. The notationt8 is used to distinguish this time constant
from the t in the regular stretched exponential~1!. For g
Þ0, the presence of the additional term on the right-hand
side of Eq.~12! leads to a steepening of the slope of the
decay fort values smaller thang, while the effect becomes
negligible at larget, where the curve reduces to a regular
exponential with time constantt8. The deviation from a
regular exponential for short times corresponds to a faster
relaxation, caused by a suppression of retrapping occurring
when a significant fraction of the trap states are filled.

At first sight, the functional form~12! seems distinctly
different from the stretched exponential~1!, which can also
be written as

t5tF2 ln
X

X0
G1/b. ~14!

In spite of this difference, we find that the functional form
~12! behaves remarkably similarly to a stretched exponential.
This is best illustrated by using each of the two forms to fit
the same set of experimental data, shown in Fig. 2. The data
in question were taken from Ref. 8, where they were fitted
with a stretched exponential@dashed lines, Eq.~1! or ~14!#.
The t andb values obtained in Ref. 8 are listed in Table I.
Figure 2 also shows how the data can be fitted with the
functional form~12! ~solid lines!, with t8 andg values also
listed in Table I. To the naked eye, the fit is virtually indis-
tinguishable from the one obtained with the stretched-
exponential form. The quality of the fit is also confirmed by
the very similar small values ofx2 for both types of fit.

The t values obtained from the stretched-exponential fits
for data at different temperatures were found to exhibit
Arrhenius behavior, described byt5t0exp(EA /kT). Reassur-
ingly, the t8 values obtained from fitting with Eq.~12! can
equally well be fitted in this fashion, leading tot0 andEA
values very similar to those obtained using the stretched-
exponential model. Such fits producet0 values in the range
1027–1028 s, i.e., an unusually large prefactor. If the pro-
cess consisted simply of the hydrogen being released from a
trap by escaping over a barrier, one might expect the prefac-
tor to be determined by a typical phonon frequency. In our
model, the time constantt8 @Eq. ~13!# includes other factors
besides the release rate (nT). Indeed, 1/nT is scaled by
NTsT /NRsR , whereNTsT can be interpreted as a total cap-
ture rate for trap states, andNRsR as a total capture rate for
reservoir states, offering a natural explanation for why the
prefactor can be substantially different from a typical phonon
frequency.

The excellent fit observed in Fig. 2 is not an isolated
instance. We have applied the procedure of fitting with Eq.
~12! to a variety of data in the literature on amorphous9 and
polycrystalline10 silicon, with very good results. In this lit-
erature, we have not yet encountered a case where Eq.~12!
was unable to produce a fit that was at least as good as the
stretched exponential. Our assumptions I–IV were made
solely to enable obtaining an analytical solution@Eq. ~12!#; a
more general approach that avoids these assumptions would
lead to an expression containing more parameters, which
could only improve the quality of the fits.

The basic idea of including retrapping of hydrogen as an
essential component of a relaxation process is not novel; for
instance, it was applied by Zundel and Weber11 in their
analysis of the reactivation kinetics of passivated boron in
silicon. However, to our knowledge, the notion of retrapping
has not previously been invoked to explain relaxation behav-
ior in disordered systems, and the resemblance of the result-
ing time dependence to a stretched exponential has not pre-
viously been pointed out.

It is tempting to think that because the plotted functions
look so similar, there should be a direct relationship between
the parameterst andb on the one hand, andt8 andg on the
other. However, we have not been able to find such a rela-
tionship; linearization of the curves leads to distinctly differ-
ent answers, depending on the point around which the linear-
ization is performed. The approach we are proposing here is
therefore not a simple transformation of the regular stretched
exponential.

The real test of the validity of Eq.~12! to explain experi-
mental observations should come from an inspection of the
variations in the parameters corresponding to controlled
changes in the experimental conditions. We already showed
favorable results with respect to changes in temperature. An
intriguing feature of the functional form~12! is that the pa-

FIG. 2. Decay of the normalized light-induced dangling-bond
density ina-Si:H for various temperatures~130, 140, and 160 °C,
from right to left!. Data points are from Ref. 8. Fits to stretched
exponentials@Eq. ~1!# are given by dashed lines. Fits to the func-
tional form ~12! are indicated by solid lines. The parameter values
used in both types of fit are listed in Table I.

TABLE I. Fitting parameters for the fits displayed in Fig. 2.

Temperature t b t8 g

130 °C 42.3 0.81 68.4 41.8
140 °C 23.4 0.81 37.9 23.3
160 °C 7.72 0.87 10.8 4.92
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rameterg is proportional toX0 , which reflects the initial
conditions. We have not yet been able to identify experimen-
tal data which provide sufficient detail to address this issue.

Another interesting aspect of our model should be high-
lighted, namely the behavior of the system in response to
small deviations from equilibrium. In order to address near-
equilibrium situations, we have to drop assumption III, and
allow H atoms to escape from the reservoir, thereby estab-
lishing an equilibrium between hydrogen in reservoir and in
trap states. Even if we still keep assumption IV, the resulting
complication makes analytical solution of Eq.~8! difficult.
However, it is straightforward to inspect the qualitative be-
havior when a small deviation from equilibrium is applied.6

The equilibrium solution Xe is obtained by setting
dX/dt50. A small deviation is then introduced:X5Xe1d;
by substituting this expression in Eq.~8! and using the fact
thatXe sets the right-hand side of~8! equal to zero, a differ-
ential equation ford is obtained, which turns out to be of the
same form as Eq.~9! ~with different parameters, of course!;
i.e., the relaxation of the system in response to a small de-
viation from equilibrium is described by the same
‘‘stretched-exponential-like’’ functional form that we exam-

ined previously. This type of behavior has been observed in
conductivity measurements of dopeda-Si:H after small ther-
mal perturbations.9 The fact that our model reproduces this
behavior is significant; other models tend to reduce to a
simple exponential decay when small perturbations from
equilibrium are applied.

In summary, we propose a model for dispersive decay
which does not invoke the usual assumption about statistical
distributions leading to the conventional stretched exponen-
tial. The model is able to fit a variety of experimental data,
and provides a physical explanation for the parameters ex-
tracted from the fit. We do not suggest that this model ap-
plies to all situations where stretched-exponential decay is
observed; however, none of the other approaches that have
been proposed to explain stretched-exponential behavior can
claim universal applicability either.3 While most of these
other explanations invoke statistical distributions, the model
described here shows that a statistical distribution isnot re-
quired to obtain a stretched-exponential-like decay.

Thanks are due to M. Cohen, C. Herring, W. Jackson, C.
Nebel, and R. Street for useful discussions.
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