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The microscopic structure of hydrogen-boron complexes in silicon, which result from the passiva-
.tion of boron-doped silicon by hydrogen, has been extensively debated in the literature. Most of the
debate has focussed on the equilibrium site for the H atom. Here we study the microscopic struc-
ture of the complexes using parameter-free total-energy calculations and an exploration of the entire
energy surface for H in Si:B. We conclusively show that the global energy minimum occurs for H at
a site close to the center of a Si—B bond (BM site), but that there is a barrier of only 0.2 eV for
movement of the H atom between four equivalent BM sites. This low energy barrier implies that at
room temperature H is able to move around the B atom. Other sites for H proposed by others as
the equilibrium sites are shown to be saddle points considerably higher in energy. The vibrational
frequency of the H stretching mode at the BM site is calculated and found to be in agreement with
experiment. Calculations of the dissociation energy of the complex are discussed.

I. INTRODUCTION

The role that hydrogen plays in semiconductors has be-
come the subject of intense research!? following the
discovery that hydrogen is able to passivate the electrical
activity of shallow acceptors in silicon. This passivation
effect is of considerable importance for technological
reasons. The properties of electronic devices are largely
determined by the presence and activity of shallow im-
purity levels and passivation of their activity by om-
nipresent (accidentally or intentionally) hydrogen would
alter the properties of those devices in an uncontrollable
way as long as the passivation mechanism is not
thoroughly understood. The passivation effect was first
suggested by Sah er al.? in an inventive analysis of exper-
iments on metal-oxide-semiconductor (MOS) capacitors.
The connection between hydrogen and boron (as the pro-
totypical acceptor-type impurity) concentrations was
soon established in studies of the passivation effect under
controlled experimental conditions by Pankove et al.*
and Johnson.” This discovery supplemented the under-
standing of the role of hydrogen in semiconductors,
which was previously known to be the saturation of dan-
gling bonds at defects, surfaces, and interfaces, or pas-
sivation of deep levels in the energy gap, e.g., those due to
transition-metal impurities. At first, the passivation
effect was found to be considerably smaller in case of sil-
icon doped with donor-type impurities (n type).® Recent-
ly, however, it was found that also in n-type material
there is a strong passivation effect, although still not as
strong as in p-type material.’

A large number of experiments was performed to eluci-
date the fundamental reactions underlying the passiva-
tion mechanism and they generally claimed to support
each other. For some time, however, the analysis of these
experiments contained contradictory assumptions regard-
ing the charge state of H. A step forward in the under-
standing of the passivation mechanism was made in Ref.
8, in which one of the present authors suggested that hy-
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drogen is a deep donor in silicon and was able to account
for a large portion of the experimental observations. As-
suming that H is a deep donor in Si, passivation in p-type
material would come about in two steps: (1) compensa-
tion, i.e., the annihilation of free holes associated with the
ionized acceptors by the electrons of the H atoms, and (2)
formation of a neutral complex (or pair) out of a nega-
tively charged acceptor and a positively charged H atom.
We stress that the first step already establishes passiva-
tion and that the second step is only the logical conse-
quence of the first step. On the basis of first-principles
total-energy calculations, Van de Walle et al.’ con-
clusively showed that H indeed acts as a donor in p-type
material, confirming the proposed passivation mecha-
nism. This conclusion could be reached from calcula-
tions for H in different charge states in pure Si. Ques-
tions pertaining to the nature and quantitative properties
of the hydrogen-acceptor complex were not addressed in
that work.

Soon after the hydrogen-acceptor complexes were
discovered, a controversy arose regarding their micro-
scopic structure. Pankove et al .,% on the basis of in-
frared spectroscopy of boron-doped Si (Si:B), proposed
that H would be inserted in a Si—B bond with the substi-
tutional B pushed out toward the plane of three neighbor-
ing Si atoms. This configuration was confirmed in
theoretical calculations by DeLeo and Fowler,'® who
used a semiempirical cluster method. These authors also
reproduced the measured vibrational frequency of the H
stretching mode. However, Assali and Leite,!! using a
method very similar to the one DeLeo and Fowler em-
ployed, proposed a site for the H atom on the extension
of a Si—B bond, the so called antibonding site. Using a
spring-constant model they too were able to reproduce
the measured H vibrational frequency, although DeLeo
and Fowler!? found a very different frequency if H were
to be at the antibonding site. Based on tight-
binding—-model calculations for the hydrogenated vacan-
cy in pure Si, Baranowski and Tatarkiewicz!® speculated
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that H would occupy a site on the extension of a B—Si
bond (backbonding site), forming a Si(p)—H(s) bond.
Hartree-Fock cluster calculations were used by Amore
Bonapasta et al.,'* who found a position near the center
of a Si—B bond as the equilibrium site for H.

Experimental investigations into the microscopic struc-
ture of hydrogen-acceptor complexes (in which the accep-
tor usually is boron) have included infrared measure-
ments and Raman studies of the H vibrational frequen-
cy,*>15717 jon-channeling measurements of the lattice lo-
cation of H and the displacement from the substitutional
site of B,'872! the perturbed-angular-correlation tech-
nique to explore hydrogen-indium pairs in $i,?* x-ray-
diffraction studies of the lattice relaxation due to passiva-
tion,?> and uniaxial-stress studies of the H-stretching
mode.?* Generally, the picture emerges from these stud-
ies that H dominantly occupies a site near the center of a
Si—B bond, although smaller percentages are seen to re-
side at antibonding or tetrahedral interstitial sites.!®2%22
The latter observations, however, could also be connected
with damage induced by H. The vibrational frequency of
the H-stretching mode is found to be 1903 cm ™! for low
temperatures'®!” (~5 K). We will discuss some of the
results in these papers in more detail in Sec. III, where
the theoretical results of the present paper are given.

In previous theoretical work!©™142526 opnly a limited
set of possibilities for the equilibrium site of the H atom
was considered. Since it is to be expected that anytime
the H atom is located close to the B atom it will remove
the electrically active level from the gap, it is necessary to
study the entire total-energy surface for H in B-doped Si
in order to determine the favored site. Furthermore,
since the energy differences between configurations in
which H occupies different sites are small, there is a need
for accurate calculations of such energy differences.
Most of the theoretical approaches above use either a
cluster model, usually without studying the effect of en-
larging the cluster or the effect of terminating the cluster
in different ways, and/or semiempirical Hamiltonians
that contain a number of parameters that have been fitted
to reproduce the properties of molecules. If tests are per-
formed one invariably finds (see, e.g., Ref. 25) that these
methods are unable to reproduce the properties of even
simple bulk semiconducting crystals. When the tech-
niques are used for small clusters to simulate defects in
crystals, quite often some of the results are in agreement
with either experiment or more sophisticated calcula-
tions. Typically, however, other results may be in serious
error. In general, the lack of tests of convergence and ac-
curacy renders most predictions of such calculations as
questionable. In this work, we use a parameter-free
method of calculating total energies, the pseudopoten-
tial-density-functional method (see Sec. II), which has
proven to be very reliable in calculating and predicting
properties of a wide variety of semiconducting systems,
such as bulk solids, surfaces, interfaces, and localized and
extended defects. Furthermore, we test all of our results
for convergence and accuracy with respect to numerical
approximations involved. Finally, we have developed a
way to visualize the entire energy surface for a H intersti-
tial atom in B-doped Si similar to the method used by
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some of the present authors in a study of H in pure Si.’°

The remainder of the paper is organized as follows: In
Sec. II we discuss calculational details of our method that
are especially pertinent to the present study, as well as
tests of how the results depend on the inevitable numeri-
cal approximations involved. In Sec. III the results of
our approach are presented and compared with available
experimental data. Finally, we summarize the paper in
Sec. IV.

II. CALCULATIONAL DETAILS

The Hamiltonian in the Kohn-Sham equations?’ for
the valence electrons in a crystal is constructed using
norm-conserving pseudopotentials® to describe the in-
teraction between atomic cores (nuclei plus core elec-
trons) and valence electrons. For the exchange and
correlation interaction we use the local-density approxi-
mation (LDA) to the exchange and correlation functional
that was parametrized by Perdew and Zunger® from the
Monte Carlo simulations of an electron gas by Ceperley
and Alder.>°

We solve the Kohn-Sham equations by expanding all
functions of interest (one-electron wave functions, poten-
tials, etc.) in plane waves and solving the resulting matrix
eigenvalue problem. This procedure is iterated until a
self-consistent solution is obtained, i.e., until the effective
potential for the valence electrons that enters the Hamil-
tonian equals the effective potential that is calculated
from the wave functions that are solutions for this Hamil-
tonian. From the self-consistent one-electron energies
and wave functions the total energy of the crystal is most
conveniently calculated in momentum space.>"3? This
pseudopotential-density-functional method is a “first-
principles” method in that it contains no adjustable pa-
rameters derived from experiment. This method has been
very successful in calculating and predicting the ground-
state properties of a wide variety of semiconducting sys-
tems.>?

We calculate the total energy for a silicon crystal with
a substitutional boron atom and an interstitial hydrogen
atom for a large number of inequivalent sites of the H
atom. For every position of the H atom that we consider,
the atoms of the Si:B host crystal are allowed to relax by
minimizing the total energy with respect to the host-
crystal atomic coordinates. Relaxations up to second-
nearest neighbors are investigated as to their importance.

As the method in general is well documented, we will
discuss only the calculational details that are especially
pertinent to the present study.

A. Norm-conserving pseudopotentials

For Si and B norm-conserving pseudopotentials are
generated according to the scheme of Ref. 28. We use
the degrees of freedom that one has in generating such
pseudopotentials to our advantage by carefully choosing
core cutoff radii r, (outside of which true and pseudo-
wave-functions are identical®®). These cutoff radii can be
chosen such that a pseudopotential is generated whose
Fourier transform converges more rapidly in g space, im-
plying that a smaller number of plane waves will be re-
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quired to describe the pseudopotential.’* Generally,
moving r, outward improves the pseudopotential in the
above respect. However, moving . outward deteriorates
the description of the atom by the pseudopotential.
Cutoff radii are chosen such that a reasonable balance be-
tween both effects is found. The Si pseudopotential is the
same as used in previous work and is described else-
where.”3° The pseudopotential for B is newly generated
and is discussed here in more detail. We generate pseu-
dopotentials for angular-momentum components /=0
and 1 only. The cutoff radii for / =0 and 1 are 1.10 and
1.18 a.u., respectively. These r, are somewhat larger
than those used in Ref. 36 (1.0 and 0.9 a.u. for / =0 and
1, respectively). The generated pseudopotential is tested
by calculating the equilibrium lattice constant a., and
bulk modulus B, of boron phosphide (BP) in the zinc-
blende structure for consecutively larger values of the
kinetic-energy cutoffs E, and E,, which determine the
numbers of plane waves in the expansion of the wave
functions (plane waves with kinetic energy up to E, are
included in the calculation, those between E; and E, in
second-order Léwdin perturbation theory;’’ we invari-
ably choose E,=2E/). In the following, we will use the
notation (E;E,) to denote the choice of cutoffs. The
calculations are performed both for the newly generated
B pseudopotential as well as for the one that is tabulated
in Ref. 38. For phosphorus we use in both cases the tab-
ulated yseudopotential of Bachelet, Hamann, and
Schliiter®® (to be called the BHS pseudopotential). The
Fourier transform of the P pseudopotential falls off more
rapidly for large g than the Fourier transform of the B
pseudopotential. Therefore the convergence with respect
to kinetic-energy cutoff will be determined by the B pseu-
dopotential. For each choice of energy cutoffs, a., and
B, are calculated by computing the total energy of BP at
five lattice constants ranging between —5% and +5% of
the experimental lattice constant.>® The results are fitted
to Murnaghan’s equation of state for solids, which con-
tains a., and B as parameters.*

We combine the results for a., and B, in Fig. 1. The
single points in Fig. 1 (a,,=4.56 A and B,=1.66 Mbar)
are results obtained in Ref. 36 using a pseudopotential for
B and P very much like the BHS pseudopotential and an
energy cutoff of 20 Ry (no Lowdin perturbation tech-
nique was used in their calculation). Our results indicate
that the results of Ref. 36 have not entirely converged
with respect to increasing the energy cutoff. The main
conclusion to be drawn from Fig. 1 is that the newly gen-
erated B potential results in virtually the same a., and B,
as found with the BHS pseudopotential, but that it con-
verges faster to these values than with the BHS pseudo-
potential. Both converged values for a., (4.48 and 4.49 A
for the new and BHS pseudopotential, respectively) are in
fair agreement with the lattice constant of 4.538 A that is
found experimentally.*! The calculated bulk moduli of
1.62 and 1.68 Mbar for the new and BHS pseudopoten-
tial, respectively, cannot be compared with any experi-
mental result. Therefore, we have reached our goal of
generating a norm-conserving pseudopotential that can
be represented by fewer plane waves than the one so far
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available, while it still accurately describes a B atom in a
solid-state environment.

To illustrate the point that the cutoff radii », cannot be
pushed out too far, we mention that the converged result
for a., using a potential for B generated by choosing the
r, to lie at radii for which the outermost maxima of the
radial wave function for the respective ! values occur
(r,=1.52 and 1.56 a.u. for /=0 and 1, respectively) is
434 A. The percentage of deviation from the experimen-
tal value is more than 3 times as large as for the two oth-
er pseudopotentials.

For hydrogen we did not use a pseudopotential, al-
though it is possible to generate one. Instead we use the
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FIG. 1. Convergence of ground-state properties of BP as a
function of kinetic energy cutoff Epy (determining the number
of plane waves in the expansion of the wave functions) for two
different pseudopotentials for boron. The dots represent results
obtained using the tabulated pseudopotentials for B and P from
Ref. 38, whereas the triangles represent results obtained using a
newly generated pseudopotential for B and the tabulated pseu-
dopotential from Ref. 38 for P. The solid squares represent re-
sults obtained in Ref. 36 using pseudopotentials for B and P
very similar to the pseudopotentials in Ref. 38. Plane waves
with kinetic energy up to L Epyw are included exactly in the cal-
culation, and those between ‘;‘Epw and Epw in second-order
perturbation theory (Ref. 37). (a) Equilibrium lattice constant
a.q of BP (in A). The cross on the vertical axis denotes the ex-
perimental lattice constant (Ref. 41). (b) Equilibrium bulk
modulus B, of BP (in Mbar).
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exact 1/r Coulomb potential of the proton. In this we
follow our earlier work®3> and we refer to those papers
for a more detailed discussion.

We note that Fig. 1 is not instrumental in determining
the energy cutoffs that will be sufficient for the problems
to be addressed in this paper. Those cutoffs depend on
the properties and accuracy one is interested in and can
only be determined by explicitly calculating those proper-
ties for consecutively larger cutoffs. This will be dis-
cussed in more detail in Sec. IID. Figure 1 does show
qualitatively that these properties may be obtained at
lower cutoffs by using the newly generated B potential as
compared to the (standard) BHS pseudopotential.

B. Supercells

To model simple and complex defects we use supercells
that are periodically repeated. We investigate how calcu-
lated properties depend on supercell size and we deter-
mine when they become independent of supercell size
(within a desired accuracy). As in previous work® > we
use supercells of 8, 16, and 32 atoms in which defects are
separated by 5.43, 7.68, and 9.41 A respectively.

In addition to the finite separation between defects,
another artifact particularly pertinent to defect calcula-
tions in general arises from using a (finite-size) supercell.
Defect levels that show no dispersion for a truly isolated
defect do have dispersion when using finite-size super-
cells. This is, however, not a big problem in the present
calculation. The substitutional B and interstitial H atoms
together exactly supply the four valence electrons of the
Si atom that has been replaced by the substitutional B
atom. Therefore an equal number of bands is filled as in
the case of pure Si. Therefore, a H-related defect level,
which is found to be located in the energy gap exactly as
in the case of H in pure Si (See Ref. 35 and also Sec.
IIT A) is unoccupied. Even if a large dispersion of this
level causes it to drop into the valence bands for certain
points in the first Brillouin zone (1BZ), the level can be
left unoccupied when it is properly identified [this
identification can be done in a variety of ways: (1) the
charge density associated with the defect level is localized
and correlated with the position of H; (2) by comparing
the band structure of Si with a substitutional B atom
(Si:B) with and without the H atom; (3) the H-related de-
fect level will move significantly with respect to the other
bands if the band structure is calculated with the H atom
at a different position].

The dispersion of the H-related defect level for H in
Si:B is about 2.0, 1.1, and 0.6 eV for the 8-, 16-, and 32-
atom cells, respectively. See Sec. IIT A for a further dis-
cussion of these levels.

C. Brillouin-zone integrations

In two distinct stages of the calculation of the total en-
ergy, an integration over the 1BZ has to be performed:
(1) calculation of the valence charge density from the
one-electron wave functions, and (2) calculation of the
band-structure energy term from the one-electron ener-

gies.’? Both integrations are replaced by summations
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over special k points in the irreducible part of the 1BZ
(IRBZ).*** It has been established in many calculations
that by using only a very small number of k points (be-
tween 1 and 10) very accurate total-energy differences can
be obtained. In general, one has to test for every applica-
tion how many k points are sufficient for a certain accu-
racy. Such tests are reported below.

We employed the general Monkhorst-Pack (MP)
scheme** to generate special points sets with their param-
eter g equal to 2. The number of special points generated
with this choice of g depends on the position of the H
atom in the unit cell. It is also different for the different
supercell sizes that we use. When H is located at a gen-
eral position on the extension of a Si—B bond, g =2 re-
sults in two, five, and two special points for the 8-, 16-,
and 32-atom cell, respectively. For less symmetric H po-
sitions this number can be as high as 16 in the 16-atom
cell and 4 in the 32-atom cell. The following test was exe-
cuted to determine the accuracy that is obtained with the
q =2 choice for special points in the MP scheme: We
calculate the total-energy difference between config-
urations in which H occupies a position near the center
of a Si—B bond and one in which H is located on the ex-
tension of a Si—B bond. These two reference
configurations are defined only for the purpose of carry-
ing out meaningful tests of the Brillouin-zone integra-
tions (this subsection) and the dependence of results on
supercell size and basis-set size (next subsection). They
should not be confused with the fully relaxed
configurations that will be described later. In the first
configuration [to be called the bond-minimum (BM)
reference configuration] the H atom and the Si and B
atoms constituting the bond in which H is located are al-
lowed to relax their position in order to find the
minimum-energy configuration. In this BM reference
configuration the Si and B atoms relax outward by 0.24
and 0.42 A respectively. In the second configuration [to
be called the antibonding ( AB) reference configuration]
only the H and B atoms are relaxed. In this configuration
the H atom has a distance of 1.32 A from the B atom,
which relaxes inward (away from H and towards a Si
atom) by 0.09 A. The relaxation of B is an artifact
springing from the fact that the Si atoms are kept fixed.
In the fully relaxed AB configuration the four Si neigh-
bors of B relax inward because of the smaller size of the B
atom (see Sec. III B). Although we do not allow all atoms
to relax, these reference configurations are certainly
sufficiently close to the fully relaxed configurations to
make tests meaningful. In the 16-atom cell using energy
cutoffs (E;E,)=(6;12) Ry, we find an energy difference
of 0.316 eV for g =2. By choosing ¢ =4, we enlarge the
number of k points in the 1BZ by a factor of 8 and find
30 special points in the IRBZ. For ¢ =4 the above ener-
gy difference drops to 0.306 eV. In the 32-atom cell we
obtain an energy difference of 0.287 eV using g =2 (two
points in the IRBZ), whereas ¢ =4 (15 points in the
IRBZ) yields 0.286 eV. We conclude that the g =2
choice is good enough to give energy differences between
configurations with different H positions and different re-
laxations with an accuracy of about 0.01 eV. This is
slightly better than in the earlier work on H in pure Si,*
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since here we always integrate over a set of completely
filled states. Finally, in the 8-atom cell the ¢ =2 choice is
not as good as in the 16- and 32-atom cells. Tests show
that ¢ =4 (10 points in the IRBZ) provides the same ac-
curacy as ¢ =2 in the larger cells. The 8-atom cell, how-
ever, will only be used to test the convergence of energy
differences with respect to increasing the energy cutoffs
(see next subsection). For that purpose the g =2 choice is
sufficient.

D. Energy cutoffs and supercell size

Calculations using the pseudopotential-density-
functional method and a plane-wave basis set are general-
ly performed with a choice of energy cutoffs (E;E,) for
which calculated results still depend on this choice (E, is
the kinetic-energy cutoff for plane waves included in the
calculation; those with kinetic energy between E, and E,
are included using second-order Lowdin perturbation
theory®’). For a given accuracy the size of the computa-
tional problem (i.e., rank of matrices to be diagonalized)
is proportional to the volume of the unit cell, whereas
processing time and memory usage are cubic and quadra-
tic, respectively, in these sizes. Only for very small unit
cells the usual computational limitations (central-
processor-unit time and memory usage) allow one to fully
converge the calculations with respect to increasing E,
and E,. One therefore has to make a careful study of the
dependence on cutoffs in order to come to a judicious
choice and quantitatively reliable results.

As indicated in Sec. IT A, the choice of supercell size
can also affect calculated energies, because if defects in
neighboring cells are too close one is modeling a system
with interacting defects. Here we present a study of the
dependence on energy cutoffs and supercell size of the en-
ergy difference between the BM and AB reference
configurations described in the preceding subsection.
Table I and Fig. 2 show the results. In Fig. 2 we see that
the three curves for the three supercell sizes are very well

TABLE 1. Energy difference (in eV) between situations in
which hydrogen occupies the bond-minimum (BM) and anti-
bonding ( AB) reference configurations (see text) as a function of
energy cutoffs (E;E,) in (Ry) and as a function of number of
atoms in the supercell. The results for the 8-atom cell are only
used to study the dependence on energy cutoff since they have
not been fully converged with respect to enlarging the mesh
used in the k-space integrations (see text).

(El ;Ez )
(Ry) 8 atoms 16 atoms 32 atoms
(6;12) 0.481 0.316 0.287
(8;16) 0.518 0.358 0.333
(10;20) 0.554 0.399 0.370
(12;24) 0.586 0.433 0.400
(14;28) 0.602 0.451
(16;32) 0.607 0.471
(18;36) 0.610 0.475
(20;40) 0.615
(22;44) 0.621
(24;48) 0.625
(26;52) 0.628
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FIG. 2. Convergence of energy difference between the BM
and AB reference configurations (see text) in which H occupies
two different sites close to substitutional B in Si, as a function of
kinetic-energy cutoff Epy (see caption of Fig. 1) and of supercell
size. Supercells used contain, besides the H atom, 8, 16, or 32
host-crystal atoms. The results for the 8-atom cell are only used
to further probe the dependence of the energy difference on Epy
and are not fully converged with respect to enlarging the mesh
used in the k-space integrations (see text).

behaved; they have the same (regular) form and are mere-
ly shifted with respect to each other by an almost con-
stant amount. The curves for 16- and 32-atom cells do
not differ by more than 0.03 eV. The 8-atom—cell curve
shows that the behavior as a function of cutoff is the
same as for the larger cells and convergence is eventually
reached. The 8-atom-cell curve is not converged with
respect to the number of k points used in the Brillouin-
zone integrations (¢ =2 was used; see preceding subsec-
tion), which is unimportant for the present purpose of
testing the dependence of energy differences on energy
cutoff. For E, =36 Ry we consider the energy difference
to be converged, since the changes resulting from using
higher cutoffs are very small compared to other numeri-
cal approximations employed (e.g., the Brillouin-zone in-
tegrations described in the preceding subsection).

We further study the energy-cutoff dependence of cal-
culated energy differences by examining a larger set of
positions for the H atom. The different sites considered
here lie in the (110) plane and are depicted in Fig. 3. We
use the 32-atom cell and all atoms up to second-nearest
neighbors of the H atom are allowed to relax. In addi-
tion, the Si neighbors of the B atom are always allowed to
relax. Table IT summarizes the results. For the purpose
of discussing Table II and following results, we find it
useful to subdivide the different positions for the H atom
into three regions. In region I the valence-electron densi-
ty is very high (e.g., the BM site) and putting a H atom
there will induce large relaxations of the crystal. In re-
gion II the electron density is lower but still considerable
(e.g., the AB, BB, C, and C'’ sites); consequently, relaxa-
tions of the crystal are also still considerable. In region
III the electron density is very small (T, and H' sites)
and the H atom will not induce much relaxation. Of
course, one always has the relaxation of the Si neighbors
of the B atom because of the smaller size of the B atom.
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T,.

BB, BB,

AB, AB,

T4, C. Td.

T,

FIG. 3. Location in the (110) plane, containing a zig-zag
chain of Si atoms and a substitutional B atom, of sites often re-
ferred to in the text. BM denotes the bond-minimum site, AB
the antibonding site, BB the backbonding site, T, the
tetrahedral interstitial site, and H and H' are (inequivalent) hex-
agonal interstitial sites. The C and C’ sites are equivalent in
pure Si, but not in the presence of a substitutional B atom.

Regarding convergence with respect to increasing the en-
ergy cutoffs, we make the following observation: energy
differences between sites in the same region change by
less than 0.05 eV by going from cutoffs (6;12) Ry to
cutoffs (10;20) Ry and therefore may be considered fairly
well converged at (6;12) Ry. In these calculations the re-
laxations are determined at the lower cutoffs and kept
fixed for the higher cutoffs so that variations of energy
differences are due solely to the change in cutoffs. Energy
differences between sites in different regions change by
‘about 0.1 eV when the combination of sites is region
I-region II. This observation is useful if one wants to ex-
trapolate calculated energy differences to very high ener-
gy cutoffs, which because of computational limitations
cannot be handled together with large supercells. Tables
I and II together provide means of extrapolating to
higher cutoffs in order to obtain reliable quantitative esti-
mates for energy barriers. We observe from Table I that
the amount of change in going from cutoffs (6;12) Ry to

TABLE II. Energies (in eV) of situations in which hydrogen
occupies different sites (see text and Fig. 3) in Si:B as a function
of energy cutoffs (E;E,). As the zero of energy, the energy of
the global energy minimum (BM site) is chosen. Energies are
calculated in a 32-atom cell including relaxation up to second-
nearest neighbors of the hydrogen atom. & is the difference be-
tween the (6;12)- and (10;20)-Ry calculations.

Site (6;12) Ry (10;20) Ry 5 (eV)
BM 0.00 0.00 0.00
AB 0.26 0.37 0.11
BB 0.97 1.10 0.13
C 0.11 0.20 0.09
c’ 1.36 1.44 0.08
H' 1.06 1.26 0.20
7, 1.61 1.85 0.24
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cutoffs (10;20) Ry is about the same as that of going from
(10;20) Ry to the converged values that we consider
reached at (18;36) Ry. Therefore, calculations of energy
differences between two sites at (6;12) and (10;20) Ry al-
low one to extrapolate to the converged energy differ-
ences. Using Table II we find that the BM site is 0.48 eV
lower than the AB site and 0.29 eV lower than the C site.
One should not apply such extrapolations to energy
differences between sites in regions I and III (e.g., BM
and T sites) before a table like Table I for sites in regions
I and III is calculated.

Considering the above results, we come to the follow-
ing choice of supercell size and energy cutoffs that we will
use to calculate total energies for a large number of
different H positions: We use 32-atom cells and energy
cutoffs of (6;12) Ry. The use of the 32-atom cell allows us
to take relaxations up to second-nearest neighbors of the
H atom into account. Furthermore, the (artificial) disper-
sion of the H-related defect level in the gap is manage-
able, although a larger dispersion is not a big problem for
the neutral H-B pair in Si as discussed in Sec. IIB. The
energy cutoffs (6;12) Ry are large enough to obtain quali-
tatively correct energy differences between different posi-
tions of the H atom, whereas it is still possible to calcu-
late energies for a large number of different positions, in-
cluding those that destroy all point-group symmetry of
the system. It is necessary to calculate the energy for a
large number of different H positions to get a picture of
the entire energy surface for H in Si:B. For cases of spe-
cial interest the energy difference can also be found in a
quantitatively reliable way by using higher cutoffs and ex-
trapolation, as shown above.

Occasionally, for positions of H for which the system
has very low symmetry, the total-energy difference with a
position for which the system has higher symmetry, but
that lies in the same density region, is calculated in a 16-
atom cell. This difference is then assumed to be the same
in the 32-atom cell.

E. Energy surfaces

It is very illuminating to combine the results of total-
energy calculations for different positions of an impurity
atom in a host crystal into an energy surface E(R;,;,)
with the position of the impurity atom R;,,, as the coor-
dinate (note that this does not exclude the possibility that
the host crystal contains other impurities). Such a sur-
face provides immediate insight in the migration path-
ways, migration barriers, and stable sites for the impurity
atom.

Quite generally, the observation can be made® that the
function E(R;,,) has the complete symmetry of the host
crystal (without the tracer impurity), i.e., for any opera-
tion 72 of the space group of the host crystal structure,
we have

E(R;

imp

)=E(ARp,) - (1)

For instance, in a pure Si crystal, positions R;,,, of a H
atom in the center of different Si—Si bonds will render
the same total energy, if all the appropriate relaxations
are taken into account. Of course, different atoms relax

for different bond-centered (BC) sites, since the Si atoms
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forming the bond in which the H atom resides will relax
most strongly. However, the relaxations for two different
BC sites are connected by the same symmetry operation
that connects the two sites. To obtain the energy surface
E(R;,,) we now proceed as follows: The function
E(R;np) is expanded in a basis set of functions that all
have the symmetry of the host crystal. The expansion
coefficients are obtained by a least-squares fit to calculat-
ed values E(Ry,,;) for different positions Ry, ;
(i=1,...,N). By varying the degree to which the prob-
lem is overdetermined (where overdetermined means that
the number of calculated data points, N, is larger than
the number of symmetry functions, M, in the expansion),
one can check the stability and, thus, the reliability of the
fit.

For host crystals with a high degree of translational
symmetry, a suitable set of basis functions is the set of
symmetrized plane waves ®,(r):

L—
P ()= 3 """, 2

m =1

where the K!! are vectors of the reciprocal lattice that
corresponds to the Bravais lattice of the crystal. For
each /, the N, vectors K!” transform into each other un-
der operations of the crystallographic point group.

In previous work on H in pure Si,”* typically eight
symmetrized plane waves and 10 calculated points
E (Ryy,,,;) were sufficient to obtain stable energy surfaces.
However, for the problem we are addressing in this pa-
per, the behavior of a H atom in a boron-doped Si crystal,
the translational symmetry is essentially lost, and sym-
metrized plane waves are a less obvious choice of basis
functions for the expansion of the energy surface. A pos-
sible solution to this problem would be to add a set of lo-
calized functions, e.g., Gaussians centered on the atoms,
to the basis set or use a basis set consisting completely of
localized functions. The disadvantage of such an ap-
proach is that a more complicated (nonlinear) fitting
problem is encountered, since also the decay constants
that appear in the Gaussians need to be fitted. We have
chosen the following approach: In the same spirit as used
in the supercell approach discussed in Sec. II B, we use as
basis functions for the expansion of the energy surface
symmetrized plane waves of a supercell. In this way,
periodicity is restored so that symmetrized plane waves
are suitable basis functions, but the repeat distances can
be chosen so large that the region around the substitu-
tional impurity atom that we are interested in is not
affected by impurities in neighboring cells. By studying
the behavior of the total energy when the H atom is
moved away from the B atom, and comparing this with
the case of H' in pure Si, we establish (see Sec. III C)
that the influence of the B atom has disappeared at a dis-
tance of about 2.1 A from the B atom. Therefore, to de-
scribe the energy surface around a B atom, it is allowed
to assume that it has the symmetry of the 8-atom super-
cell, which has repeat distances of 5.43 A in three perpen-
dicular directions. This, in turn, implies that the sym-
metrized plane waves ®,(r), with K!! reciprocal-lattice
vectors belonging to the (simple-cubic) lattice of the 8-
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atom cell, are suitable functions to expand the surface in.
We would like to stress that this choice of supercell is in-
dependent of the choice of supercell one uses in calculat-
ing the total energies E(R;,,, ;). For the latter purpose
one needs supercells of 32 atoms to take into account all
relevant relaxations of the host crystal, as argued before.

Using this approach, the total energy still has to be cal-
culated for a large number of different positions R, ; of
the H atom. We have found that about 40 inequivalent
sites in the 8-atom cell are needed to get a good descrip-
tion of the energy surface. This number is consistent
with the number of points (ten) typically used in fitting
the energy surface for H in pure Si, the diamond struc-
ture of which has a unit cell 4 times as small. Typically,
25 symmetrized plane waves are used in the fit of the en-
ergy surface of H in Si:B. Results of this procedure will
be shown below.

III. RESULTS AND DISCUSSION

A. Electronic structure

The band structure for the Si crystal with the H-B
complex closely resembles that of Si with a substitutional
B atom; there is no acceptorlike level in the gap showing
that the acceptor is passivated. We note that a supercell
calculation of the band structure of Si with a substitu-
tional B atom, but without the H atom, will only produce
an acceptorlike level in the gap if very large supercells are
used. The hydrogenic state corresponding to such a shal-
low level is known to extend over several tens of
angstroms and can therefore not be described by small
supercells. Indeed, we do not find such a level in calcula-
tions without the H atom with supercells of up to 32
atoms. We do find a level near the gap that behaves al-
most identically to the level found in the case of H in
pure Si;*® this level is therefore related to H. We find that
the wave function associated with this level is mostly lo-
calized around the position of the H atom and that the
position of this level in the gap moves when the H atom
is moved. As already discussed in Sec. II B, we note that
our use of supercells induces defect levels to have disper-
sion. To obtain a dispersionless level from our calcula-
tions, we take a weighted average of the defect-level posi-
tion over the special k points for which the band struc-
ture is calculated during the total-energy calculation
(more symmetric k points carry less weight because they
map onto fewer points in the 1BZ). The position of this
level depends on the location of the H atom and roughly
two cases may be distinguished. If the H atom is in one
of the regions of high or intermediate electron density
(regions I and II as defined in Sec. II D), the H-related de-
fect level is located slightly above the bottom of the con-
duction bands. If the top of the valence bands is chosen
as the zero of the energy scale, the bottom of the conduc-
tion bands of Si with one substitutional B atom is found
to be at 0.46 eV (an underestimation of the experimental
energy gap of 1.17 eV as is usual in LDA calculations).
For H at the BM, AB, C, and C' sites (see Fig. 3), the de-
fect level is at 0.50, 0.56, 0.62, and 0.53 eV, respectively.
If the H atom is in the low-density region (region III), the
defect level appears as a resonance slightly below the top
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of the valence bands. For H at the T, and H' sites of
Fig. 3, the defect level is at —0.37 and —0.09 eV, respec-
tively. If the H atom is located in region III, it is not
bound to any atom and acts as an acceptor. The position
of the defect level is sensitive to the energy cutoffs used;
the quoted results were obtained using 32-atom cells and
cutoffs of (6;12) Ry and have only qualitative value. One
should also bear in mind here that it is a well-known
deficiency of the LDA that, while the valence bands of a
semiconductor are well described, the conduction bands,
and also conduction-band-related levels, are not in agree-
ment with experiment. This problem has recently been
overcome for bulk solids by including many-body correc-
tions.* Since for defect calculations this solution in-
volves a prohibitive computational effort, it has not yet
been applied to such calculations, which are already very
demanding by themselves.

In the self-consistent calculation of the total energy,
the H-related level is always unoccupied, since the substi-
tutional B and interstitial H atoms together exactly sup-
ply the four valence electrons of the Si atom that has
been replaced by the B atom, so that only the “pure-Si”-
like bands are occupied if the defect level is in the con-
duction bands. If the defect level is just below the top of
the valence bands, it is still left unoccupied, since for the
k points at which the band structure is calculated during
the self-consistency process the .defect level usually lies
between the valence- and conduction-band levels. If it
lies below the top valence-band level, we leave it unoccu-
pied artificially to obtain a consistent comparison with
the total-energy calculations for H at the other sites.

B. Relaxation of the host crystal

In this subsection we present results for the relaxation
of the host crystal (Si:B) for some characteristic positions
of the H atom. For every position the total energy is
minimized with respect to the positions of the atoms in
the host crystal.

We first mention that in the absence of the H atom the
four Si neighbors of the B atom relax toward the B atom
in a “breathing-mode”-type relaxation, whereas the B
atom shows a very slight tendency to become threefold
coordinated by moving towards a plane with three Si
neighbors (it moves less than 0.1 A). Both for neutral B
(B®) and negatively charged B (B™) the relaxation of the
Si neighbors is 0.21 A, reducing the Si—Si bond distance
of 2.35 A by 9%. The energy gain of this relaxation is 0.9
eV. The relaxation results in a Si—B distance of 2.14 A,
which is very close to the sum of covalent radii of Si and
B (1.17 and 0.90 A respectively). It is interesting to com-
pare this result for the Si—B distance with an experimen-
tal result from x-ray-diffraction measurements of the lat-
tice contraction in B-doped Si. To make the comparison,
some assumptions have to be made, the validity of which
is not easily assessed. We first assume that the lattice
contraction is solely caused by the difference in covalent
radii of Si and B (in general, there is also a, possibly com-
peting, electronic contribution caused by the pressure
dependence of the band-gap edges*®). Using our result of
2.14 A for the Si—B distance and following the simple
argument of Shih et al.,*’ the ‘“natural-bond” length
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defined in Ref. 48 for a Si—B bond becomes 2.07 A. If
we now use Végard’s law for the average bond length in
B-doped Si (with pure Si and ‘“‘zinc-blende” BSi as ex-
treme structures), we may extract the contraction
coefficient 3, defined by

Aa/a=pCy , (3)

where Cj is the boron concentration and Aa /a is the rel-
ative change in average lattice constant. We find
B=—4.8X10"2* cm?/atom, which is in agreement with
the experimental results of fB=—(6+£2)X10"%*
cm?/atom (see the references in Ref. 23).

The relaxation of the host crystal in the presence of a
H atom is most appreciable if H resides in the BM site
(see Fig. 3). This site is located in a Si—B bond slightly
displaced from the bond center toward the B atom. We
distinguish it from the geometrical bond center (BC),
which was found to be the global energy minimum for
H™ in Si in previous work.® The BM site is the global en-
ergy minimum for H in Si:B (see the next subsection).
For H at this site the neighboring Si and B atoms relax
outward (as measured from their ideal lattice positions)
by 0.24 and 0.42 A, respectlvely The smaller outward
relaxation of the Si atom is easily explained by the fact
that it would relax inward by 0.21 A if the H atom was
absent. Put differently, the above relaxations allow for
close to ideal H—Si and H—B distances since they result
in a H—Si distance of 1.65 A and a H—B distance of
1.36 A. For comparison, we mention that for H® (H*) in
the BC site in pure Si the two Si atoms formmg the bond
relax outward by 0.45 A [(0.41 A), resulting in a H—Si
distance of 1.63 A (1.59 A) Typical H—B distances in
B,H, (diborane) are 1.20 AforHina terminating bond
and 1.34 A for H in a bridging bond.** The second-
nearest Si neighbors of the H atom in the BM site relax
outward along the original bond axes by 0.05 A if they
are bonded to the Si neighbor of H and relax inward
along the original bond axes by 0.14 A if they are bonded
to the B neighbor of H. These relaxations result in Si—Si
and Si—B bond distances of 2.33 and 2.11 A, respective-
ly, which are very close to the Si—Si distance in pure Si
(2.35 A) and the Si—B distance in Si:B (2.14 A). The gain
in energy of these relaxations compared to the
configuration in which H occupies the exact bond-center
site and all other atoms occupy their ideal lattice posi-
tions is calculated to be 3.2 eV.

Our calculated relaxed configuration for the BM site is
in qualitative agreement with the results of previous work
using a variety of methods.!®142® Notable differences are
as follows. In Ref. 14 the H atom was found to reside
closer to Si than to B. The outward relaxation of the B
atom of 0.58 A found by DeLeo and Fowler!® (which we
extract from their Fig. 1) significantly exceeds our result
of 0.42 A, which, in turn, is larger than the experimental
result of 0.28+0.03 A from ion- channeling measure-
ments.!® The error estimate of the experimental value re-
sults from the analysis of the data and does not include
the inherent insensitivity of the channeling method,
which is about 0.1 A.'®

For H at the AB site (see Fig. 3), which is a minimum
along the (111) axis, but a saddle point of the entire en-
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ergy surface (see next subsection), the H—B distance is
1.32 A. The B atom hardly moves from its substitutional
site (less than 0.05 A towards H) and the three Si neigh-
bors relax toward B by 0.14 A. Our calculated H—B dis-
tance is in between those found in Refs. 10 and 11, where
very different distances of 1.19 and 1.8 A, respectively,
were found using similar semiempirical cluster calcula-
tions.

If H is positioned at the C site (Fig. 3), the B atom does
not move from its substitutional site. This may again be
explalned by the fact that the H—B distance in this case
is close to ideal (1.36 A). Note that this is different from
the case of HY in pure Si, where the dlstance is smaller
than the ideal H—Si distance of ~1.6 A. In that case an
appreciable relaxation of the Si atom away from the H
atom results. For H at the C site in Si:B, the inward re-
laxation of the two Si atoms bonded to B and next to H
(see Fig. 3) is obstructed by the presence of H and is only
0.05 A, whereas the two Si atoms bonded to B but far
away from H (in the plane perpendicular to that of Fig. 3)
have the same inward relaxation as for the BM and AB
sites discussed above. The minimum energy for H along
the line connecting the C site and the B substitutional
atom is not at the C site, but slightly displaced (0.24 A)
from it toward the B atom. For that position the B atom
does relax away from the H atom to restore the preferred
H—B distance of 1.36 A.

Finally, if H is put at the tetrahedral interstitial site
(T,) or hexagonal interstitial site (H or H' in Fig. 3) the
only relaxation is a “breathing-mode” relaxation of 0.21
A of the Si atoms bonded to the B atom. This is exactly
the same relaxation as in the complete absence of the H
atom (see above), which is consistent with the earlier
finding® that there is no appreciable relaxation for H at
the T; or H' sites in pure Si.

From the results of first-principles total-energy calcula-
tions presented here, it can be inferred that the relaxa-
tions of the host crystal are roughly determined by the
tendency of two neighboring atoms to be separated by
some preferred distance. The preferred distance is rough-
ly determined by the sum of covalent radii (for H a co-
valent radius of 0.43 A has to be used). However, there
are also deviations from this general behavior, e.g., the
H-obstructed relaxation of two Si neighbors of B for H at
the Csite. In any case, the examples described above can
be considered as a data base to allow for an efficient
search for the configurational energy minimum for an ar-
bitrary H position.

C. Energy surface for H in Si:B

The effect of introducing a substitutional boron impuri-
ty in the silicon crystal on the behavior of H is clearly
demonstrated in Fig. 4. We compare the energy of a H
atom in Si:B with the energy of a positively charged H
(H*) atom in pure Si for various positions of the H atom
along the line connecting two bonded Si and B atoms
(two Si atoms in the case of pure Si). We note that with
H" in pure Si we do not mean a bare proton in pure Si;
the notation is a mere shorthand for the fact that one
electron is left out of the system.>® The other electrons
are still allowed to distribute themselves self-consistently
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FIG. 4. Energy for positions of the hydrogen atom along the
(111) axis for H" in pure Si (dashed line) and for H° in Si:B
(solid line). For all positions of the H atom, coordinates of the
host-crystal atoms have been relaxed to minimize the energy.
The curves have been truncated at 0.08 eV for positions very
close to the Si (in pure Si) or B atom (in Si:B) at u = —0.25. The
smaller truncated region for B reflects that H can approach the
B atom closer than the Si atom.

according to Schrodinger’s equation. The line connecting
two bonded atoms we call the (111) axis and the posi-
tion along this line is given by the single coordinate u; a
coordinate u means that the position has Cartesian coor-
dinates (u,u,u) in units of the Si diamond-structure lat-
tice constant of 5.43 A. A coordinate u = —0.5 denotes
the unrelaxed Si atomic position, u =—0.25 the unre-
laxed B atomic position, and ¥ =0 and 0.25 are T sites.
The comparison with H™ in pure Si is the most meaning-
ful comparison that one can make, because H behaves as
a donor in p-type material and will give up its electron to
annihilate the free holes resulting from the ionized accep-
tor. (This does not imply that H behaves as a bare proton
everywhere in p-type Si; just as for H at the bond-center
position in pure Si,’® in the H-B complex the missing
electron is not removed from the immediate neighbor-
hood of the H atom, but from a region extending past the
neighboring atoms.) The two curves have been obtained
from the energy surfaces for the two cases (H" in Si and
H in Si:B) by extracting the energy values for coordinates
along the (111) axis. The energy scales have been
aligned at the distant T, site, #=0.25. It is clear from
Fig. 4 that the influence of the substitutional B atom does
not stretch out further than u = —0.03, corresponding to
2.1 A from the B atom. Beyond that point the curves
coincide to within better than 0.1 eV (which is about the
estimated error of energy calculation and fit together).
The above observation justifies the use of symmetrized
plane waves with the periodicity of the 8-atom (conven-
tional) unit cell of the diamond structure as basis func-
tions for the expansion of the energy surface. We repeat
(see Sec. III E) that this observation does not imply that it
is sufficient to do the total-energy calculations in a super-
cell of eight atoms. This procedure for the expansion of
the energy surface is satisfactory if one is interested in
this surface in the neighborhood of the B atom (see Sec.
II1 E). Further away from the B atom, the surface is iden-
tical to the one for H" in pure Si (see Fig. 4; we have also
established this for H positions that are not on the (111)
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axis). Figure 4 also shows that B acts as an attractor to
the H atom, since the bond-centered and antibonding
minima are lowered and moved towards the B atom.
From the three-dimensional and contour plots of the en-
ergy surface in the complete (110) plane containing the
(111) axis (to be discussed below with Figs. 5 and 6), it
follows that the BM site is an actual (and even global)
minimum, whereas the AB site represents a saddle point.
There is no energy barrier between the AB site and an
equivalent BM site that is not located along this (111)
axis.

In Figs. 5(a) and 5(b) we show three-dimensional plots
of the energy surface for H in Si:B for positions of H in
the (110) plane (containing a chain of atoms as in Fig. 3)
and the (111) plane through three bond-minima sites, re-
spectively. Figure 5(a) shows the low-energy region (in
red) around the B atom. The region does not contain the
AB and BB sites on both extensions of the Si—B bond;
these sites appear as saddle points of the energy surface.
From Fig. 5(b) it is clear that the low-energy region ex-
tends all around the B atom, which is located slightly out
of the (111) plane, which is shown in Fig. 5(b).

In Fig. 6(a) we show a contour plot of the energy sur-
face for H in the (110) plane in Si:B. It shows most of the
salient features of the complete energy surface, which
cannot be shown in one picture since the energy is a func-
tion of three independent coordinates. The BM site is the
global minimum, whereas we see again that the 4B site is
a saddle point. In Fig. 6(b) we show exactly the same
part of the energy surface for the case of H' in pure Si.
From the comparison we see that the H atom gets
trapped close to the B atom and has no low-energy path-
way to migrate away from the B atom. The H atom can
move between equivalent BM sites around the B atom by
passing over an energy barrier close to the C site (between
the C site and the B atom) of only 0.2 eV. Of course, for
this to happen the relaxation of the host crystal has to ad-
just accordingly. There is no barrier between the BM and
C sites. The low-energy barrier implies that at room tem-
perature the H atom will be able to move around the B
atom between the four equivalent BM sites. Very recent-
ly, in experiments using the optical dichroism of the H-B
absorption bands under uniaxial stress, an activation en-
ergy of 0.19 eV was found for H motion from one BM site
to another.?* This activation energy is in excellent agree-
ment with our calculated barrier of 0.2 eV.

We find that the BM site is 0.48 eV lower than the 4B
site and 0.29 eV lower than the C site. The energy
difference between BM and AB sites of 3.12 eV, obtained
in Ref. 14 from Hartree-Fock calculations, we consider to
be very unreliable. A final observation from Fig. 6(a) is
that the C and C’ sites, which are completely equivalent
in pure Si, are not only symmetrically inequiyalent (e.g.,
Cis at 1.36 A from the B atom, C’ at 1.92 A), but that
they differ in energy by the large amount of 1.2 eV. This
site inequivalence in the neighborhood of a substitutional
impurity leads us to a brief discussion of the accuracy
with which ion-channeling experiments are able to deter-
mine the site of hydrogen.!®2° The analysis of ion-
channeling experiments involves a statistical average over
the possible substitutional sites for the impurity B atom.>
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After such an average, the energy surface for a H atom in
Si:B has the complete symmetry of the diamond structure
of pure Si. This implies that, for instance, the C and C’
sites are considered to be completely equivalent in the
analysis of ion-channeling experiments. The same holds
for the 4B and BB sites (see Fig. 3), which in our calcula-
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FIG. 5. Energy surface for a hydrogen atom in Si with one
substitutional boron atom in (a) a (110) plane containing a chain
of atoms, and (b) a (111) plane through three equivalent bond-
minima (BM) positions. The black dots represent Si atoms and
the pink dot the B atom. The plane in (b) does not contain
atoms, but the unrelaxed lattice position of the B atom is locat-
ed just 0.4 A outside the plane in the center of the surface.
Atoms are shown at their unrelaxed positions since they relax
differently for different positions of the H atom, but relaxations
are taken into account in the total-energy calculations. The en-
ergy is below —1.35 eV in the red region, between —1.35 and
—0.7 eV in the blue region, and between —0.7 and 0.05 eV in
the green region. The surface is cut off at an energy value of
0.05 eV. The zero of energy is chosen at the tetrahedral intersti-
tial site.
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tion differ by about 0.7 eV in energy (the AB site being
the lower-energy site). Therefore, ion-channeling experi-
ments are able to discriminate between sites that remain
inequivalent when averaging over the possible substitu-
tional sites for the B atom, e.g., BM and AB sites. They

FIG. 6. Contour plots of the energy surface of a H atom in
the (110) plane in boron-doped and pure silicon. Large dots in-
dicate (unrelaxed) atomic positions; bonded atoms are connect-
ed by solid lines. Positions of special interest are indicated (cf.
Fig. 3). The unit of energy is eV and the spacing between con-
tours is 0.25 eV. Close to the atoms contours are not shown
above a certain energy value. (a) H® in Si:B. The boron atom
occupies the center of the plot. Highest contour shown is 0.05
eV. (b) H" in pure Si. Highest contour shown 0.65 eV.
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cannot discriminate, however, between, e.g., AB and BB
sites. On account of this, the conclusion from these ex-
periments that H resides predominantly in a Si—B bond
(a Si—Si bond can be excluded since a large displacement
from the substitutional site of the B atom is also ob-
served'?) is indisputable, but the further detailing of per-
centages of H at other sites?® is not necessarily relevant to
the microscopic structure of the H-B complex. Observa-
tion in ion-channeling experiments of H at other sites is
most likely related to defects which may be located far
away from the B atom.

In Fig. 7 we present contour plots of the energy surface
in a few other planes, showing that the BM site is indeed
the global energy minimum and that there is a spherical
shell-like region (with some holes in it) at a radial dis-
tance of about 1.3 A from the B atom, for which the en-
ergy is between —1.45 and — 1.7 eV (with respect to the
energy at a far T, site). Thus the H atom can move
around adiabatically on this shell with an energy barrier
at a site closer to the C site of only 0.2 eV.

D. Hydrogen vibrational frequencies

Because infrared measurements of the hydrogen vibra-
tional frequency have been an important source of experi-
mental information on the H-B complex,*!>1® it is
worthwhile to make a connection with that work by cal-
culating the vibrational frequency for the H-stretching
mode. We have done this for a number of different sites
for the H atom that all have been proposed as the equilib-
rium site for the H atom on account of theoretical calcu-
lations.

The sites for which we calculated the frequency of the
H-stretching mode are the BM and AB sites already dis-
cussed extensively above, as well as the backbonding
(BB) site shown in Fig. 3. For H in the latter site, the
H—Si distance is again 1.60 A, while the Si atom closest
to H relaxes toward the B atom by 0.3 A. For each of the
three sites, we determine the minimum-energy config-
uration by allowing up to eight atoms around the H atom
as well as the H atom itself to relax. Subsequently, we
move the H atom away from its equilibrium position in
directions corresponding to a stretching mode over dis-
tances of 2% and 4% of a Si—Si bond length. The relax-
ation of the host crystal is now kept as in the minimum-
energy configuration.’! The procedure described above
induces energy changes of typically up to 30 meV. These
energy differences AE are fitted to a parabola
AE =1fu %, where uy is the displacement of the H atom
and f the force constant of the stretching mode. If f is
expressed in units of eV/A?, the wave number « for the
stretching mode is given in units of cm ! by

1

2T

f(eV/A?)

X 5 —1
938.25 10" cm =, “@

where we have taken the vibrating object to be a proton
(with rest mass m,c>=938.25 MeV). A very similar pro-
cedure to the one described here was used successfully by
Kaxiras and Joannopoulos® to calculate vibrational fre-
quencies of H atoms saturating dangling bonds at Si and
Ge (111) surfaces.
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In Table III we summarize our results and list the re-
sults of previous theoretical calculations using a variety
of methods. From varying the number of calculated
points used in the parabolic fit and from calculations at
lower energy cutoffs, we estimate the error bar on our

calculated frequencies to be 100 cm ™!, Also, results ob-
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tained from the same calculations in a 16-atom cell fall
within this error bar. Considering the error bar, our re-
sult for the H vibrational frequency at the BM site is in
fair agreement with the low-temperature (5 K) experi-
mental results!®!” of 1903 and 1907 cm™!. The agree-
ment with the result obtained at 273 K (1870 cm ™ !) (Ref.

FIG. 7. Contour plots of the energy surface of a neutral H atom in various planes in Si:B [see Fig. 6(a) for the (110) plane]. Indica-
tors are the same as in Fig. 6. (a) (211) plane containing one B—Si bond (B atom on the left). H AB denotes the hexagonal antibond-
ing site, a saddle point of the energy surface about halfway between the hexagonal interstitial site H and the B atom. (b) (111) plane
through three bond minima (BM sites). The M sites lie halfway between two C sites, one of which is in the (110) plane (see Figs. 3
and 6). In this plane there is a ringlike low-energy region around the B atom (that is not located in this plane). The perspective plot
for this plane is shown in Fig. 5(b). (c) (001) plane through two bond minima (BM sites). This plane is perpendicular to the (110)

plane of Fig. 6(a).
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TABLE III. Calculated wave numbers Ky, (in cm ~!) of vi-
brational frequencies of hydrogen-stretching modes for hydro-
gen in the bond-minimum (BM), antibonding ( AB), and back-
bonding (BB) sites in Si:B compared with previous theoretical
calculations using a variety of methods.

Previous
Present theoretical
result calculations
Site Kstretch Kstretch
BM 1830 1880,% 1820°
AB 1680 1000,° 1870,° 2590¢
BB 1590
Expt. 1903¢

*Reference 10.
"Reference 26.
‘Reference 11.
dReference 12.
‘Reference 16.

15) is even better, but that is not the appropriate number
to compare with.

In view of the error bar of 100 cm ™!, the results for the
BM and AB sites are not that different, and would not
supply strong enough evidence for one to conjecture that
the infrared data exclude the AB site as the equilibrium
site for H. Previous authors did make this claim on ac-
count of their finding that the H vibrational frequency is
very different for the BM and AB sites. The peculiar fact
occurred, however, that their results for the BM site are
in general agreement with experiment, but DeLeo and
Fowler!? find the result for the 4B site to be much larger
(2590 cm™!), whereas Chang and Chadi?®® find it to be
much smaller (1000 cm™!) than the experimental value.
These authors did not discuss the accuracy of their calcu-
lated result. We stress that, of course, the AB site can be
ruled out as the equilibrium site for the H atom because
of the fact that it is a saddle point of the energy surface
and 0.48 eV higher in energy than the BM site, without a
barrier between the two sites [see Fig. 6(a)]. The result
for the AB site of 1870 cm ™! in Ref. 11 was obtained by
fitting a force-constant model to the experimental value
that was known at that time. Not too much value must
be attached to this result. ‘

It is interesting to compare our results of Table III
with the vibrational frequency for H® (H") in a BC site
(geometrical bond center) in pure Si. For that case we
calculate a frequency of 1945 (2210 cm™!). This is much
larger than the result for the BB site in Table III. Since
the frequency for the BM site is in between those ob-
tained for a H atom close to one Si atom (at the BB site in
Si:B) and a H atom in between two Si atoms (at the BC
site in Si), we infer that at the BM site there is still a fair
amount of bonding between H and B besides the bonding
between H and Si. The fact that the H atom is also bond-
ed to the B atom (which is a modification of the original
description of the bond-centered configuration by Pan-
kove et al.*) can also be inferred from the fact that the H
atom can easily move around the B atom between
equivalent BM sites, as discussed in the preceding subsec-
tion.
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Infrared frequencies that have been associated with
stretching modes involving a single H atom in hydro-
genated amorphous Si and hydrogenated crystalline Si
range between 2000 and 2200 cm ™ '.3*»* The fact that
our results of 1945 and 2210 cm ™! (for H® and H™ at the
bond-centered site in pure Si, respectively) are close to
these frequencies and also to the vibrational frequency of
H saturating a dangling bond at a Si (111) surface (2085
cm™!) is remarkable. We also observe that the A4B-site
frequency of 1680 cm™! resulting from a stretching H—B
bond is apparently greatly modified with respect to fre-
quencies of 2560 cm ™! (for terminal H bonding) and 1985
cm ™! (for bridge bonding) found in diborane.*

To conclude this subsection we briefly discuss the side
bands in the infrared transmission spectra that were re-
cently found for the H-Al and H-Ga complexes in Si (for
the H-B complex the side bands are not resolved, but
they are expected to be there).'® Stavola et al.'® suggest-
ed that these side bands are the result of a low-frequency
excitation, for which they proposed two possibilities.
The first possibility is the tunneling of H between
different but equivalent BM sites. This must be con-
sidered unlikely, because of the rather large adjustments
in the relaxation of the host crystal that have to happen
for these sites to be indeed equivalent. This explanation
was more recently abandoned by Stavola and co-
workers.?* The second possibility is that the H atom re-
sides slightly off the BM site and off the (111) axis; the
vibration would then be modeled by that of a quasilinear
molecule, which is known to have side bands.”® In that
case, the configuration would resemble that of oxygen
bridging a Si—Si bond.*®* We have investigated this pos-
sibility by positioning the H atom slightly off axis from
the BM site on the (111) axis. While keeping the relaxa-
tion of the surrounding crystal fixed, the energy remained
constant for small displacements (<0.1 A) of the H atom
in several directions. We did not allow the surrounding
crystal to adjust its relaxation, but this can only lower the
energy. However, by moving the H atom off axis, we
change the symmetry of the system considerably, and the
changes in energy that we obtain fall within the accuracy
of our calculations. We conclude that an off-axis position
for the H atom is very well possible, but cannot be quan-
titatively assessed by our calculations.

E. Dissociation energy of the H-B complex

It is found experimentally that at temperatures above
150°C the conductivity of the passivated samples starts
to recover and can eventually be restored completely.*>
It seems natural to attribute the increase in conductivity
to the dissociation of the H-B complexes and subsequent
diffusion of H out of the passivated region. As we saw
earlier, H-induced passivation arises from compensation
followed by pair formation. By the same token, one can
consider the dissociation reaction:

(BHY—B +HT™ . (5)

This reaction, however, produces no free holes (i.e., the
material is still compensated) and leaves open the possi-
bility of reformation of the pairs by the reverse reaction.
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Restoration of the conductivity requires an additional re-
action, for instance,

H =H’+h ", (6)

where ht denotes a free hole. Reaction (6), which
denotes an electronic process, equilibrates very fast. The
relative amounts of H' versus H® are determined by the
position of the Fermi level. If the conditions are such
that HO is overwhelmingly favored over H™, the follow-
ing reaction would apply:

(BH)—-B~ +H+a " . (7

Since B is a shallow acceptor, we can assume that its pre-
ferred state (after dissociation of the H-B complex) is an
ionized B™.

We see that there is no unique, single reaction describ-
ing the dissociation of the H-B pair. Nevertheless, we
have calculated dissociation energies associated with
specific dissociation reactions. By dissociation energy we
mean the energy difference between the initial and final
configurations of the breakup reaction. Quite generally,
one can define for any reaction that can occur in two
directions the reaction activation energies for the forward
and reverse reactions. The dissociation energy as defined
above is also precisely the difference between the two re-
action activation energies associated - with the dissociation
reaction.

The dissociation energy associated with reaction (5) is
found by calculating the following total energies:’! (i)
E(HB), the total energy of the fully relaxed Si:B crystal
with H at the BM site; (ii) E(B ™), the total energy of the
fully relaxed Si crystal with a substitutional B~; (iii)
EMH™), the total energy of a fully relaxed Si crystal with
a H* at the BC site; and (iv) E(Si), the total energy of a
pure Si crystal. The dissociation energy E, may now be
defined as

E,=—E(HB)+E(B )+EMH")—E(Si) . (8)

This dissociation energy does not depend on the Fermi
level, because no electrons or holes are involved in reac-
tion (5). This formula results in E; =0.59 eV.

To calculate the dissociation energy based on reaction
(7), one has to use the following formula:

E,=—EHB)+EB )+EMH)+Eh")—ESi), ()

where E(h ™) is the energy of a free hole, for which we
take minus the Fermi energy Ej (a hole is the absence of
an electron). The dissociation energy in (9) does depend
on the Fermi level because it involves reaction (6). From
(9) we find a dissociation energy E; =1.09 eV —Ep.

Experimentally, one can determine a dissociation ener-
gy if the dissociation is governed by first-order kinetics,
i.e., the rate of change with time of the number of pairs N
is proportional to N:

dN _

7 —vN , (10)

where v is the dissociation rate constant. This assump-
tion would have to be tested by demonstrating a linear
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dependence of In(N) on time for several temperatures
[In(N)=—wvt]. For v, an Arrhenius-type temperature
dependence is usually assumed:

v=vee 4 (11)

where v, is an attempt frequency and E , the activation
energy. If the assumption of first-order kinetics holds,
the measured temperature dependence of v allows one to
extract the activation energy E 4. This activation energy
is the energy barrier that must be overcome for the
breakup to occur [for instance, the forward-reaction ac-
tivation energy of reaction (5)]. It does not correspond to
a dissociation energy in the sense of the energy difference
between the pair and the isolated breakup products.

The experimental procedure just described has not
been carried out. Wichert et al.? followed the simplified
procedure of isochronal annealing in which they assumed
first-order kinetics. They extracted an activation energy
of 1.3 eV in the case of H-In pairs. They estimated that
the H-B pairs would break up with a smaller activation
energy. We note, however, that it has been found®’ that
first-order kinetics is not obeyed, so that this number may
not be particularly meaningful and cannot be compared
with theoretical values. A more sophisticated analysis of
the data would be needed to extract energies that can be
compared with theory.

Finally, we mention that one may define the binding
energy of the H-B complex as the difference between the
energy of the H-B complex in a Si crystal and the sum of
the energies of a (neutral) H atom in free space and of a
(neutral) B substitutional in Si. This binding energy is
more of a conceptual quantity, contrary to the dissocia-
tion energy discussed above (which, however, is often
called a binding energy as well). According to this
definition a binding energy of 3.31 eV is obtained.>®

IV. CONCLUSIONS

The study of the total-energy surface for H in Si:B us-
ing the first-principles pseudopotential-density-functional
method presented in this paper conclusively shows that a
H-B complex is formed in which the H atom occupies a
site close to the center of a Si—B bond (BM site). This
complex is the net result of the passivation mechanism
that removes the shallow-acceptor level from the gap,
thereby neutralizing the electrical activity of boron-
doped silicon. Other sites that were previously proposed
to be equilibrium sites for H by others are shown to be
saddle points of the energy surface that are higher in en-
ergy by at least 0.48 eV. We find that the H atom can
move between four equivalent BM sites over a spherical
shell-like region with an energy barrier of only 0.2 eV.

The calculated vibrational frequency for the H-
stretching mode centered on the BM site is in good agree-
ment with infrared and Raman experiments. The oc-
currence of sidebands in the infrared spectrum can be
qualitatively understood since H can reside slightly off
the bond axis from the BM site.



39 MICROSCOPIC STRUCTURE OF THE HYDROGEN-BORON . . .

ACKNOWLEDGMENTS

This work was supported in part by the U.S. Office of

Naval Research under Contract No. N00014-384-C-0396.

10 823

One of us (P.J.H.D.) acknowledges support from IBM
Netherlands N.V. We further acknowledge useful discus-
sions with Dr. A. D. Marwick.

*Present address: Physics Department, University of Nijmegen,
Toernooiveld, 6525 ED Nijmegen, The Netherlands.

TPresent address: Philips Laboratories, 345 Scarborough Road,
Briarcliff Manor, NY 10510.

1S. J. Pearton, J. W. Corbett, and T. S. Shi, Appl. Phys. A 43,
153 (1987).

2An overview of recent work may be found in Defects in Elec-
tronic Materials, Materials Research Society Symposia
Proceedings Vol. 104, edited by M. Stavola, S. J. Pearton, and
G. Davies (Materials Research Society, Pittsburgh, PA,
1988), pp. 229-309.

3C.T. Sah,J. Y. C. Sun, and J. J. T. Tzou, Appl. Phys. Lett. 43,
204 (1983); J. Appl. Phys. 54, 5864 (1983).

43. I. Pankove, D. E. Carlson, J. E. Berkeyheiser, and R. O.
Wance, Phys. Rev. Lett. 51, 2224 (1983); J. I. Pankove, R. O.
Wance, and J. E. Berkeyheiser, Appl. Phys. Lett. 45, 1100
(1984); J. 1. Pankove, P. J. Zanzucchi, and C. W. Magee, ibid.
46, 421 (1985).

5N. M. Johnson and M. D. Moyer, Appl. Phys. Lett. 46, 787
(1985); N. M. Johnson, Phys. Rev. B 31, 5525 (1985).

6N. M. Johnson, C. Herring, and D. J. Chadi, Phys. Rev. Lett.
56, 769 (1986); 59, 2116 (1987); N. M. Johnson and C. Her-
ring, in Defects in Electronic Materials, Materials Research
Society Symposia Proceedings Vol. 104, edited by M. Stavola,
S. J. Pearton, and G. Davies (Materials Research Society,
Pittsburgh, PA, 1988), p. 277.

7K. Bergman, M. Stavola, S. J. Pearton, and J. Lopata, Phys.
Rev. B 37, 2770 (1988).

8S. T. Pantelides, Appl. Phys. Lett. 50, 995 (1987).

9C. G. Van de Walle, Y. Bar-Yam, and S. T. Pantelides, Phys.
Rev. Lett. 60, 2761 (1988).

10G. G. DeLeo and W. B. Fowler, Phys. Rev. B 31, 6861 (1985).

111, V. C. Assali and J. R. Leite, Phys. Rev. Lett. 55, 980 (1985);
56, 403 (1986).

12G. G. DeLeo and W. B. Fowler, Phys. Rev. Lett. 56, 402
(1986).

133, M. Baranowski and J. Tatarkiewicz, Phys. Rev. B 35, 7450
(1987).

14A. Amore Bonapasta, A. Lapiccirella, N. Tomassini, and M.
Capizzi, Phys. Rev. B 36, 6228 (1987).

I5M. Stavola, S. J. Pearton, J. Lopata, and W. C. Dautremont-
Smith, Appl. Phys. Lett. 50, 1086 (1987).

16M. Stavola, S. J. Pearton, J. Lopata, and W. C. Dautremont-
Smith, Phys. Rev. B 37, 8313 (1988).

17M. Stutzmann, Phys. Rev. B 35, 5921 (1987); M. Stutzmann
and C. P. Herrero, Appl. Phys. Lett. 51, 1413 (1987).

18A. D. Marwick, G. S. Oehrlein, and N. M. Johnson, Phys.
Rev. B 36, 4539 (1987).

19A. D. Marwick, G. S. Oehrlein, J. H. Barrett, and N. M.
Johnson, in Defects in Electronic Materials, Materials
Research Society Symposia Proceedings Vol. 14, edited by M.
Stavola, S. J. Pearton, and G. Davies (Materials Research So-
ciety, Pittsburgh, PA, 1988), p. 259.

20B. B. Nielsen, J. U. Andersen, and S. J. Pearton, Phys. Rev.
Lett. 60, 321 (1988).

21Th. Wichert, H. Skudlik, H.-D. Carstanjen, T. Enders, M.

Deicher, G. Griibel, R. Keller, L. Song, and M. Stutzmann,
in Defects in Electronic Materials, Materials Research Society
Symposia Proceedings Vol. 104, edited by M. Stavola, S. J.
Pearton, and G. Davies (Materials Research Society, Pitts-
burgh, PA, 1988), p. 265.

22Th. Wichert, H. Skudlik, M. Deicher, G. Griibel, R. Keller,
E. Recknagel, and L. Song, Phys. Rev. Lett. 59, 2087 (1987).

23M. Stutzmann, J. Harsanyi, A. Breitschwerdt, and C. P. Her-
rero, Appl. Phys. Lett. 52, 1667 (1988).

24M. Stavola, K. Bergman, S. J. Pearton, and J. Lopata, Phys.
Rev. Lett. 61, 2786 (1988).

25P. Deak, L. C. Snyder, R. K. Singh, and J. W. Corbett, Phys.
Rev. B 36, 9612 (1987); P. Deak and L. C. Snyder, ibid. 36,
9619 (1987).

26K. J. Chang and D. J. Chadi, Phys. Rev. Lett. 60, 1422 (1988).

27p, Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964); W.
Kohn and L. J. Sham, ibid. 140, A1133 (1965).

28D, R. Hamann, M. Schliiter, and C. Chiang, Phys. Rev. Lett.
43, 1494 (1979).

293, Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

30D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566
(1980).

313, Thm, A. Zunger, and M. L. Cohen, J. Phys. C 12, 4409
(1979).

32p. J. H. Dentencer, Ph.D. thesis, Eindhoven University of
Technology, 1987, available from the author upon request.

33S. G. Louie, in Electronic Structure, Dynamics, and Quantum
Structural Properties of Condensed Matter, edited by J. T. De-
vreese and P. E. van Camp (Plenum, New York, 1985).

34Y. Bar-Yam, S. T. Pantelides, and J. D. Joannopoulos, Phys.
Rev. B 39, 3396 (1989).

35C. G. Van de Walle, P. J. H. Denteneer, Y. Bar-Yam, and S.
T. Pantelides, the preceding paper, Phys. Rev. B 39, 10791
(1989).

36R. M. Wentzcovitch, M. L. Cohen, and P. K. Lam, Phys. Rev.
B 36, 6058 (1987).

37P. O. Lowdin, J. Chem. Phys. 19, 1396 (1951).

38G. B. Bachelet, D. R. Hamann, and M. Schliiter, Phys. Rev. B
26, 4199 (1982).

39Two special points (see Refs. 43 and 44) are used in these cal-
culations to integrate over the first Brillouin zone.

40F. D. Murnaghan, Proc. Nat. Acad. Sci. U.S.A. 30, 244 (1944).

41Landolt-Bornstein: Numerical Data and Functional Relation-
ships in Science and Technology, edited by O. Madelung, M.
Schulz, and H. Weiss (Springer, Berlin, 1982), Gp. 3, Vol. 17,
Pt. a.

42y, Bar-Yam and J. D. Joannopoulos, Phys. Rev. B 30, 1844
(1984).

43A. Baldereschi, Phys. Rev. B 7, 5212 (1973); D. J. Chadi and
M. L. Cohen, ibid. 8, 5747 (1973).

44H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

45M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390
(1986); R. W. Godby, M. Schliiter, and L. J. Sham, ibid. 37,
10159 (1988).

46J. A. Vergés, D. Glotzel, M. Cardona, and O. K. Andersen,
Phys. Status Solidi B 113, 519 (1982).



10 824

47K. Shih, W. E. Spicer, W. A. Harrison, and A. Sher, Phys.
Rev. B 31, 1139 (1985).

48E. A. Kraut and W. A. Harrison, J. Vac. Sci. Technol. B 3,
1267 (1985).

49L. S. Bartell and B. L. Caroll, J. Chem. Phys. 40, 1135 (1965).

503, H. Barrett, Phys. Rev. B 3, 1527 (1971).

51These calculations were done in a 32-atom cell with energy
cutoffs of (10;20) Ry and two special k points.

52E. Kaxiras and J. D. Joannopoulos, Phys. Rev. B 37, 8842
(1988).

53M. H. Brodsky, M. Cardona, and J. J. Cuomo, Phys. Rev. B
16, 3556 (1977).

54H. J. Stein, Phys. Rev. Lett. 43, 1030 (1979).

55W. R. Thorson and I. Nakagawa, J. Chem. Phys. 33, 994

DENTENEER, VAN de WALLE, AND PANTELIDES 39

(1960).

3D, R. Bosomworth, W. Hayes, A. R. L. Spray, and G. D.
Watkins, Proc. R. Soc. London, Ser. A 317, 133 (1970).

5TM. Stavola (private communication).

58Since the crystal calculations do not include spin-polarization
effects, we calculate the energy of the H atom also without
spin polarization. Our calculated number is quantitatively
rather unreliable since a calculation in a crystal is compared
with an atomic calculation and these are very different re-
garding approximations that are made. This is illustrated by
the fact that if the two crystal calculations are performed
with the lower cutoffs (6;12) Ry [as opposed to (10;20) Ry for
the quoted value], the binding energy becomes 2.75 eV.



