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Abstract
In this work we present theoretical calculations and analysis of the vibronic
structure of the spin-triplet optical transition in diamond nitrogen-vacancy (NV)
centres. The electronic structure of the defect is described using accurate first-
principles methods based on hybrid functionals. We devise a computational
methodology to determine the coupling between electrons and phonons during
an optical transition in the dilute limit. As a result, our approach yields a smooth
spectral function of electron–phonon coupling and includes both quasi-localized
and bulk phonons on equal footings. The luminescence lineshape is determined
via the generating function approach. We obtain a highly accurate description of
the luminescence band, including all key parameters such as the Huang–Rhys
factor, the Debye–Waller factor, and the frequency of the dominant phonon
mode. More importantly, our work provides insight into the vibrational structure
of NV centres, in particular the role of local modes and vibrational resonances.
In particular, we find that the pronounced mode at 65meV is a vibrational
resonance, and we quantify localization properties of this mode. These excellent
results for the benchmark diamond (NV) centre provide confidence that the
procedure can be applied to other defects, including alternative systems that are
being considered for applications in quantum information processing.
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1. Introduction

In the past decade, the negatively charged nitrogen-vacancy (NV) centre in diamond [1] has
emerged as a very versatile solid-state system for studies of quantum information [2]. The main
characteristics that make it unique [1] are its paramagnetic ground state [3], bright
luminescence, extremely long spin coherence times [4], coupling to nearby nuclear spins [5],
and the ability to initialize and read out the spin using optical techniques [6, 7]. Increasingly,
NV centres in bulk crystals and nanodiamonds are used for metrological applications at the
nanoscale, i.e., for measuring local magnetic [8] and electric [9] fields, temperature [10–12], and
pressure [13].

The negatively charged NV centre possesses C v3 symmetry and consists of a substitutional
nitrogen atom adjacent to a nearby carbon vacancy (figure 1(a)) with an additional trapped
electron, the total electric charge thus being −1. The electronic structure of the ground and the
lowest excited states of the centre is mainly determined by four electrons in atomically localized
states of a1 and e (ex and ey) symmetries; the energy level diagram of the many-electron system is

shown in figure 1(b) [14, 15]. The basics of NV physics is understood in terms of the ground-
state triplet A3

2 state (configuration a e1
2 2), the excited state triplet E3 state (configuration a e1

1 3),

and two singlet ‘darkʼstates E1 and A1 1 (configuration a e1
2 2). The singlets play a crucial role in

both initialization and read-out of the ground-state spin [1].
Nearly all of the applications of NV centres rely on measuring photoluminescence between

E3 and A3
2 electronic states as a function of other experimental parameters [1]. At low

temperatures the luminescence band [16] consists of a sharp zero-phonon line (ZPL) at
=E 1.945ZPL eV (637m), and ∼4 increasingly broad phonon replicas with a phonon energy of

∼63-65meV, as schematically shown in figure 1(c). A detailed analysis of the experimental
phonon sideband was performed by Davies [17]. In particular, he determined the weight of the
ZPL ≈w 2.4ZPL % and a Huang–Rhys (HR) factor [18], in essence the average number of
phonons emitted during the optical transition (see section 2 for a quantitative definition),
S = 3.73.

The relevance of the NV centre to a variety of applications and the crucial importance of
the luminescence band in all these applications raises a question: can the luminescence
lineshape, i.e., the electron–phonon coupling during the optical transition, be calculated using
first-principles calculations that require no experimental input? Such calculations should
address an accurate determination of the HR factor, frequencies of dominant phonon modes, as
well as the fine structure of the phonon sideband, including the coupling to long-range acoustic
phonons. Previous work [19, 20] has addressed the vibrational structure of NV centres to some
extent; however, because of finite-size effects the results of these calculations are somewhat
ambiguous. No first-principles calculation of the luminescence lineshape has been performed to
date. Such a calculation would provide valuable information about electron–phonon coupling at
NV centres, which at present is incompletely understood [1]. In addition, if the theory is
predictive, it can be applied to other defects, for example alternative systems that are currently
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being actively considered for quantum information and metrology applications [21–24], or
defects that play an important role in light-emitting diodes [25, 26].

In this work we present accurate calculations of the vibronic structure pertaining to the
triplet luminescence band of the NV centre in diamond. We demonstrate that the combination of
state-of-the-art first-principles methods, in particular hybrid density functional theory (DFT)
[27], and computational techniques to address electron–phonon coupling at large enough length
scales to accurately include long-wavelength acoustic phonons, is very successful in describing
the luminescence lineshape and all the related parameters. The experimental luminescence
spectrum which serves as a benchmark for the theoretical study has been measured in our
laboratory. The measured luminescence band is of a comparable quality to those of [28] and
[29].

This paper is organized as follows. In section 2 we outline the general theory to calculate
the vibrational structure of luminescence bands and describe our computational approach. In
section 3 the details of acquiring and processing the experimental spectrum are presented. The
results are presented in section 4 and analyzed in section 5. Section 6 contains our conclusions.
The paper is supplemented with four appendices that discuss specific technical issues in more
detail.

2. Theory and computational methodology

2.1. Luminescence

The excited state E3 is an orbital doublet that forms an ⊗E e Jahn–Teller system via coupling
to e phonon modes [17, 30, 31]. The Jahn–Teller effect is dynamical, since the energy splitting
between the vibronic sub-levels is larger than the barrier in the adiabatic potential energy
surface δ ≈ 10 meV [31]. The presence of this effect is manifest in the broadening of the ZPL

Figure 1. (a) Schematic representation of the NV centre. Green: carbon atoms; blue:
nitrogen atom. The dashed circle indicates the position of the carbon vacancy. The pink
isosurfaces depict the wavefunctions of the single-electron a1 and e states. (b) Energy-
level diagram of the negatively charged NV centre. The luminescence occurs between
triplet states E3 and A3

2. EZPL is the energy of the zero-phonon line. (c) One-dimensional
cc diagram illustrating luminescence. ΔE e g{ , } are relaxation energies in the excited and
the ground state.
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that follows a∼T 5 rather than the usual ∼T 7 dependence at low temperatures [30, 31]. However,
the effect is weak [31], and we will neglect it when calculating the phonon sideband. One way
to judge the validity of this approximation is via an a posteriori comparison [17]. If a linear
model of electron–phonon interactions, such as the one employed in this work, accurately
describes the lineshape of the optical transition, then the Jahn–Teller effect can be considered
negligible for this particular transition. As we show below, this turns out to be the case for the
triplet luminescence at NV centres.

We also assume that the transition dipole moment μ ⃗eg
between the excited and the ground

state depends weakly on lattice parameters (the Franck–Condon approximation). At T = 0 K the
absolute luminescence intensity ωI ( ) (i.e., photons per unit time per unit energy) for a given
photon energy ω and for one emitting centre is given by (in SI units) [32]:

∑ω
ω

ε π
μ χ χ δ ω= ⃗ − −


( )I

n

c
E E( )

3
. (1)D

eg
m

gm e ZPL gm

3

0
3

2

0

2

Here =n 2.4D is the refractive index of diamond; χ
e0
and χ

gm
are vibrational levels of the excited

and the ground state; Egm is the energy of the state χ
gm
, being the sum over all vibrational modes

k, i.e., ω= ∑ E ngm k k k; and nk is the number of phonons of type k in this state. The absolute

angle-averaged value of μ
eg
is ∼5.2 Debye, as extracted from the radiative lifetime τ = 13 ns of

the =m 0s spin state of the E3 manifold [1]. A prefactor ω3 in equation (1) arises from the

density of states of photons that cause the spontaneous emission ( ω∼ 2), and the perturbing

electric field of those photons ( ω| ⃗ | ∼ 2 ). This prefactor has to be taken into account when
determining parameters pertaining to the luminescence lineshape, and this will be discussed in
section 2.2. Since in both the excited and the ground electronic state the system has C v3

symmetry, only fully symmetric a1 phonons contribute to the sum in equation (1).
The experimental determination of the absolute luminescence intensity given in

equation (1) is difficult. Thus, in this work we will consider the normalized luminescence
intensity, defined as

ω ω ω= L C A( ) ( ), (2)3

where

∣〈 ∣ 〉 ∣∑ω χ χ δ ω= − − ( )A E E( ) , (3)
m

gm e ZPL gm0
2

is the optical spectral function, and C is the normalization constant: ∫ ω ω ω=−  C A ( ) d ( )1 3 .

ωI ( ) is related to ωL ( ) via ω ε π ω=  ( )I n C c L( ) / 3 ( )D 0
3 .

The evaluation of the overlap integrals 〈 ∣ 〉χ χ
gm e0

immediately poses a challenge.

Vibrational modes that enter into equation (3) are not those of the pristine bulk, but rather those
of the solid with a defect. The use of bulk modes can lead to large discrepancies with
experiment, as we will show in section 4. Lattice imperfections induce localized or quasi-
localized vibrational modes that depend on the local electronic structure; in addition, the normal
modes in the excited state and the ground state can be in principle quite different [33]. This
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results in highly multidimensional integrals that can in practice be evaluated only for molecules
[34], small atomic clusters [35], or model defect systems [36].

Some kind of approximation is thus unavoidable. Here we assume that (i) the normal
modes that contribute to the luminescence lineshape are still those of the solid with a defect, but
(ii) the modes in the excited electronic state are identical to those in the ground state. Such an
assumption is implicit in virtually all studies of defects in solids [37, 38]. First-principles
calculations [19, 20], as well as a comparison of experimental absorption and emission spectra
[16], indicate that the assumption does not strictly hold for the NV centre. Since the more exact
calculation is not feasible, the validity of this approximation has to be checked by comparing
the results with the experimental spectrum.

When vibrational modes in the ground and the excited state are identical, the optical
spectral function ωA ( ) (equation (3)) can be calculated using a generating function approach
proposed by Lax [38], as well as Kubo and Toyozawa [39]. The fundamental quantity that has
to be calculated is the spectral function (also called spectral density) of electron–phonon
coupling [40]

∑ω δ ω ω= −  ( )S S( ) , (4)
k

k k

where the sum is over all phonon modes k with frequencies ωk, and Sk is the (partial) HR factor
for the mode k. It is defined as [37]

ω= S q (2 ), (5)k k k

2

with

∑ Δ= −
α

α α α α( )q m R R r . (6)
k

i
e i g i k i

1 2
; ; ;

α labels atoms, =i x y z{ , , }, αm is the mass of atom α (carbon or nitrogen, average atomic
masses of naturally occurring isotopes were used), αR e g i{ , }; is the equilibrium position in the

initial (excited) and the final (ground) excited state, and Δ αrk i; is a normalized vector that
describes the displacement of the atom α along the direction i in the phonon mode k. One can
use an alternative expression for q

k
:

∑
ω

Δ= −
α α

α α α( )q
m

F F r
1 1

, (7)
k

k i
e i g i k i2 1 2 ; ; ;

where −α αF Fe i g i; ; is the change of the force on the atom α along the direction i for a fixed

position of all atoms when the electronic state of the defect changes from E3 to A3
2 . The latter

equation directly follows from the relationship ⃗ − ⃗ = − ˆ ⃗ − ⃗−( ) ( )R R H F Fe g e g

1
, where Ĥ is the

Hessian matrix, different from the dynamical matrix only because of additional mass prefactors
in the latter. The two formulations are completely equivalent in the harmonic approximation. In
appendix A we show that if the dynamical Jahn–Teller effect is neglected the anharmonicities
are indeed minute. While being in principle equivalent, the use of equation (7) instead of
equation (6) offers a huge advantage when dealing with large systems, i.e., when extrapolating

ωS ( ) to the dilute limit, and this is discussed in section 2.3 and appendix B.
Once ωS ( ) is determined, the spectral function ωA ( ) (equation (3)) is given as the

Fourier transform of the generating function G(t) [38, 39]:

5

New J. Phys. 16 (2014) 073026 A Alkauskas et al



∫ω
π

− = ω γ

−∞

∞
−( )A E G t e t

1
2

( ) d . (8)ZPL
i t t

The generating function G(t) itself is defined as

= −G t e( ) , (9)S t S( ) (0)

where

∫ ω ω= ω
∞

− S t S e( ) ( ) d ( ), (10)i t

0

and

∫ ∑ω ω≡ = = =
∞

 S S t S S( 0) ( ) d ( ) , (11)
k

k
0

is the total HR factor for a given optical transition. In equation (8) the parameter γ represents the
broadening of the ZPL. In real situations this broadening has two contributions: the
homogeneous broadening due to anharmonic phonon interactions [41, 42] and the
inhomogeneous broadening due to ensemble averaging. Since neither of these two effects is
modeled in our approach, γ is chosen to reproduce the experimental width of the ZPL.

2.2. Huang–Rhys and Debye–Waller factors

The partial HR factor Sk defined in equation (5) is the average number of phonons of type k
emitted during an optical transition [18]. The total HR factor, defined in equation (11), is then
the number of phonons off all kinds that are emitted during the same transition. The HR factor
is thus an important parameter that characterizes the vibrational structure of the luminescence
band. If (i) there was no additional prefactor ω∼ 3 in the expression for the luminescence
intensity in equation (2) and (ii) the vibrational modes in the excited and the ground state were
indeed identical, then the weight of the ZPL would be given by [17, 37, 38, 43] = −w e .ZPL

S

Since this line corresponds, by definition, to zero absorbed or emitted phonons, wZPL is often
called the Debye–Waller factor, in analogy with x-ray scattering, where it represents the ratio of
the elastic to the total scattering cross-section. Therefore, we also use this nomenclature to
comply with the accepted practice.

The Debye–Waller factor wZPL is a quantity that is directly measurable in experiment, and
its determination is therefore unambiguous. In practical situations the HR factor is often
deduced from the relationship ˜ = −S wln ( )ZPL , where we have added a ‘tilde’ to distinguish this

quantity from the actual HR factor S, which is defined by equation (11). S̃ differs from S
because of the additional assumption (i).

The spectral weight in ωL ( ) (equation (2)) moves to slightly higher energies in
comparison to ωA ( ) due to the prefactor ω3. This increases the weight of the ZPL, wZPL, if

determined from ωL ( ), and thus decreases the value of S̃ with respect to S. This distinction has
to be borne in mind when comparing different experimental papers. In this paper we will
consistently use wZPL and S in their original definitions.
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2.3. First-principles approach

In this work the spectral function of electron–phonon coupling ωS ( ) (equations (4)–(6)) is
calculated within DFT. The electronic, atomic, and vibrational properties of the NV centre are
calculated in the supercell approach [44], whereby one defect is embedded in a sufficiently large
piece of host material, which is periodically repeated. We take a conventional cubic cell with
eight carbon atoms as the building block for larger supercells. The cubic supercell × ×N N N ,
for example, contains M = N8 3 atomic sites.

To study the electronic and vibrational structure of defects we use two different exchange-
correlation (XC) functionals: the generalized gradient approximation in the form proposed by
Perdew, Burke, and Ernzerhof (PBE) [45] and the screened hybrid functional of Heyd, Scuseria,
and Ernzerhof (HSE) [27]. PBE is known to describe structural properties of many materials
with high accuracy, but the calculated band gaps of semiconductors and insulators agree poorly
with experiment, and this also affects the position of defect levels within the band gap. The HSE
functional overcomes this problem by incorporating a fraction =a 1/4 of screened Fock
exchange (screening parameter ω = 0.2 Å−1). HSE calculations yield excellent results for
excitation energies for the spin-triplet optical transition in NV centres [46].

The properties of the excited state E3 have been calculated using the constrained
occupation method of Slater [47], as first applied to the NV centre by Gali et al [46]. In this
method one electron from the a1 orbital is promoted to one of the e orbitals. The electronic and
the atomic structure is optimized with a hole in the a1 state. To circumvent the problems with
the Jahn–Teller distortion in the excited state, resulting from the degeneracy of the nominal
a e ex y1

2 1 and a e ex y1
1 2 configurations, the coordinate dependence of the total energy in the excited

state is studied here by constraining the configuration to a e ex y1
1.5 1.5. This is a practical solution to

restrict the excited state density to be the average of the two degenerate configurations, retaining
a C v3 symmetry.

We find that while the integrated parameters, for example the total HR factor S
(equation (11)) converge quickly when the size of the defect supercell is increased, the
convergence of the spectral function ωS ( ) (equation (4)) is significantly slower. This is a
particular concern for the spectral function at lower energies, i.e., coupling to long-range
acoustic phonons. As an example, let us consider a × ×2 2 2 simple cubic supercell,
containing 64 lattice sites. Without a defect, the lowest energy Γ-point vibration of such a
supercell corresponds to the bulk transverse acoustic (TA) mode at the Λ point with an energy
of about 68meV. This is even higher than the experimentally determined energy of the
dominant phonon mode at the NV centre, being ω = − 63 65 meV.0 Clearly, supercells of this
size are insufficient to determine ωS ( ).

To obtain converged results and determine the nature of vibrational states, we have
performed calculations for a series of supercells: from × ×2 2 2 (64 sites) up to × ×11 11 11
(10648 sites). Since a direct approach for supercells containing more than a few hundred atoms
is computationally too demanding, we have developed a special methodology to achieve this
goal. First, in appendix A we show that it is an excellent approximation to calculate vibrational
properties at the PBE level, since the relevant vibrational modes are very similar in the PBE as
compared to the HSE functional. This presents huge computational savings, since HSE
calculations are up to two orders of magnitude more expensive. Then in appendix B we present
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a methodology to calculate vibrational spectra and spectral functions ωS ( ) for very large
systems. In short, the procedure is as follows. Partial HR factors for large systems are

determined from equation (7). Forces ⃗Fe g{ , } in the large supercell × ×N N N ( >N 3), needed in

that approach, are obtained from the calculation of a smaller supercell × ×(4 4 4) via a suitable
embedding procedure, explained in appendix B. For these large defect supercells, vibrational
modes and frequencies, that also appear in expression (7), have been determined by
diagonalizing the dynamical matrix constructed from dynamical matrices of bulk diamond and
NV centre in the × ×3 3 3 supercell. The validity of the procedure relies on the fact that the
dynamical matrix of diamond is rather short-ranged. Specific parameters of the procedure are
determined from accurate convergence tests, and are discussed in appendix B.

Defect calculations have been performed with the VASP code [48, 49], and the interaction
with ionic cores was described via the projector-augmented wave formalism [50]. A kinetic
energy cutoff of 400 eV (29.4 Ry) has been used for the expansion of electronic wavefunctions.
For the × ×2 2 2 supercell the Brillouin zone was sampled using a × ×2 2 2 k-point mesh,
and Γ-point sampling was used for larger supercells.

To produce additional insights, we have also calculated ωS ( ) (equation (5)) and ωL ( )
(equation (2)) with an additional assumption, namely that phonon modes that contribute to the
luminescence lineshape are those of the unperturbed host [51, 52]. For this purpose we have
determined the vibrational modes of bulk diamond using density functional perturbation theory
[53], reproducing earlier calculations [54]. Vibrational modes were determined on a very fine

× ×27 27 27 k-point grid close to the Brillouin zone centre, and a courser × ×9 9 9 grid
elsewhere. These calculations have been performed using the QUANTUM ESPRESSO code [55]
within the local density approximation [56]; this XC functional describes phonons modes of
bulk diamond very well [54]. To evaluate ωS ( ), the modes were mapped to the Γ-point of the
desired supercell. The contributions from the vacancy site are set to zero in equations (6) and
(7), while the mass of the nitrogen atom was set to be equal to that of the carbon atom in this
case.

3. Experimental spectrum

The NV centre photoluminescence (PL) spectrum was taken at 8K on an ensemble of NV
centres using a home-built confocal setup. The diamond sample used was a SUMITOMO high-
pressure, high-temperature grown Ib SUMICRYSTAL with a specified nitrogen content of −30 100
parts per million. The sample was irradiated with 2MeV electrons at a dose of ×1 1017

electrons cm−2 and annealed at 850°C for 2 hours to generate a high density of NV centres
within the bulk. The NV centres were photo-excited with 532 nm light with sufficiently low
intensity to suppress the luminescence of neutral (NV0 ) centres. Subsequent PL was collected
into a spectrometer with ∼0.3meV spectral resolution. The spectrum intensity was calibrated by
measuring the nominally-known spectrum of an OCEANOPTICS LS-1-LL tungsten halogen light
source placed at the same position of the diamond sample within the optical setup.

The experimentally obtained spectrum was normalized to 1 for comparison with the
theoretical calculations. For normalization purposes the low-energy tail of the spectrum was
modeled as an exponential function. The weight of the ZPL (Debye–Waller factor) was
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determined to be ∼3.2%. This corresponds to ˜ =S 3.45, in very close agreement with [29]. The
actual HR factor can be estimated to be ≈ ±S 3.85 0.05.

4. Results

4.1. Excitation energies

For the × ×4 4 4 supercell, the largest system for which we have performed actual electronic
structure calculations, EZPL was calculated to be 1.757 eV using the PBE functional, and
2.035 eV using the HSE functional. The latter is thus much closer to the experimental value of
1.945 eV. Our calculations agree with those of Gali et al [46] and Weber et al [21]. The HSE
functional is clearly superior for describing the local electronic structure of the NV centre [46].
The difference of about 0.1 eV between the experimental and calculated ZPL is within the error
bar of the HSE calculations, but would complicate direct comparisons between theoretical and
experimental lineshapes. To enable a more meaningful comparison, in all subsequent analysis
we set EZPL to the experimental value. Thus, the broadening of the ZPL γ in equation (8) and the
value EZPL are the sole instances where information from experiment has been used in the
theoretical results.

4.2. Spectral function of electron–phonon coupling S (ℏω)

We first analyze the convergence of ωS ( ) when the size of the supercell is increased. In
addition to providing justification for the computational procedure, such a study provides
insights into the origin of vibrational modes that contribute to the phonon sideband.

In figure 2 we show ωS ( ) (equation (4)) and partial HR factors (equation (5)) as a
function of the supercell size, from × ×2 2 2 to × ×11 11 11 (results for five intermediate
supercells are omitted). The range of the left vertical axes for ωS ( ) was kept identical for all
supercells, but note that this is not the case for the right vertical axes that apply to Sk. For the
calculation of ωS ( ) δ-functions in equation (4) were replaced by Gaussians with widths
σ = 6meV. HSE results are discussed here.

In the case of the smallest × ×2 2 2 supercell, only a few phonon modes contribute to
ωS ( ). The most important of these are modes with energies 60.4meV and 77.8meV, in

complete agreement with the results of Gali et al [19] (59.7 and 77.0meV), who studied local
vibrational modes for this size of supercell. While the energy of the first mode is close to the
energy of the most pronounced phonon mode seen in experiment, this agreement is largely
fortuitous, since, as mentioned in section 2.3, the lowest-energy bulk TA phonon mode in this
supercell has a similar energy. The low-energy tail that represents the coupling to long-range
phonons (< 60meV) is completely missing for this supercell, and the total HR factor S = 3.02
(inset of figure 2) is 20% smaller than the converged value S = 3.67.

In the case of a larger × ×3 3 3 supercell, the most dominant vibration is the 45.9meV
mode. This result is an artifact resulting from the use of a small cell, since this vibration
corresponds to the lowest-energy Γ-point bulk TA phonon—it is not an actual defect-derived
mode. While the total HR factor increases to 3.27, ωS ( ) is still far from converged. This
emphasizes possible dangers in drawing conclusions about local vibrational modes from small-
size supercells [20].

9
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When increasing the size of the supercell further, ωS ( ) slowly attains its converged form.
figure 3 shows that the spectral function is essentially converged for the two largest supercells
we use, even though there are still apparent changes in individual partial HR factors Sk. The
peak of ωS ( ) occurs at ω = 650 meV, in excellent agreement with experimental findings (see
section 4.3). This is the first time that theoretical calculations yield the energy of the peak
decisively. Interestingly, the total HR factor, i.e. the integral of ωS ( ), is within ∼1% of the
converged value already for the × ×4 4 4 supercell.

Figure 2 also allows us to draw the following conclusions about lattice distortions or,
equivalently, coupling to phonons, that occur during the →E A3 3

2 optical transition:

(i) The 65meV vibration is not a localized phonon mode, but a defect-induced vibrational
resonance: it occurs within the spectrum of bulk phonon modes (0–167meV). In figure 2

Figure 2. Spectral functions ωS ( ) (equation (4)) and partial Huang–Rhys factors
(equation (5)) pertaining to the spin-triplet optical transition at NV centres for
increasingly large supercells, from × ×2 2 2 to × ×11 11 11 (some intermediate
results are not shown). ωS ( ): left vertical axes and black solid lines; to enable a
meaningful comparison the range of these vertical axes is the same for all supercells. Sk:
right vertical axes and blue bars; the range of these vertical axes decreases for larger
supercells.

10
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this result is evident from the fact that for larger supercells this mode splits into many
closely spaced modes, with a simultaneous decrease of their absolute contributions. The
65meV resonance is induced by the NV centre itself, and cannot be understood solely by
considering bulk phonon spectrum. This is demonstrated in figure 3 and discussed in more
detail in section 4.3.

(ii) In agreement with a general theory of vibrational broadening of luminescence lines [41],
the spectral function is linear for small energies, i.e., ω α ω= S ( ) for ω → 0. Indeed,
partial HR factors corresponding to acoustic modes scale like ω1/ , which, multiplied with
the density of states of acoustic modes ω∼ 2, yields this linear dependence. While this
general behaviour is known [41], we emphasize that the prefactor to the linear dependence
is system dependent, and only accurate atomistic calculations such as the ones presented
here can provide the actual value. In our case we obtain
α ≈ × −3.6 10 4 meV =− 3602 eV−2. Interaction via acoustic phonons has been recently
proposed as a promising mechanism to couple two NV centres in nanodiamonds [57]. The
coupling of isolated qubits is essential for any quantum computing protocol. Our
calculations provide information about the coupling of NV centres to acoustic phonons in
bulk diamond, and can be useful pursuing the ideas proposed in [57] ideas further.

(iii) 99% of the lattice distortions due to the optical transition, as quantified by their
contribution to ωS ( ), occur within ∼12 Å of the NV centre. This follows from our finding
that the total HR factor for the × ×4 4 4 supercell is within 1% of the converged value.
However, long-range relaxations, while contributing little to the total HR factor S, are
manifest in the low-frequency part of ωS ( ), and are actually observed in the luminescence
lineshape (see section 4.3).

In figure 3 we show a comparison of ωS ( ) calculated using three different approaches.
From here on we use the following notation when we refer to our calculations: (i) ‘HSE’ refers
to calculations where atomic displacements or forces in equations (6) and (7) are calculated
using the HSE hybrid functional, but vibrational modes are calculated using the PBE functional.
As discussed in section 2.3 and appendix A, calculations for smaller supercells show that
vibrational modes calculated at the PBE level are very similar to HSE results. (ii) ‘PBE’ refers

Figure 3. Comparison of ωS ( ) calculated using three theoretical approaches: (i) the
hybrid functional HSE, (ii) the GGA functional PBE, and (iii) by using bulk phonons,
as explained in the text.
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to calculations in which all quantities are determined at the PBE level. In both (i) and (ii),
vibrational modes correspond to the defect system. (iii) ‘Bulk phonons’, refers to calculations in
which atomic distortions or forces were determined at the HSE level, as in (i), but vibrational
modes correspond to those of the unperturbed host. The comparison of (i) and (iii) should
inform us whether the introduction of the defect modifies the vibrational spectrum, and whether
the phonon sideband can be understood by considering bulk modes alone.

ωS ( ), calculated at the PBE level, is qualitatively very similar to the HSE result. The
function has a peak at ω = 64 meV, but the absolute value of ωS ( ) is smaller for almost all
energies. In particular, the total HR factor is =S 2.78, a quarter smaller than in HSE. In
contrast, when the bulk phonon spectrum is used, ωS ( ) is even qualitatively completely
different. In this case the spectral function closely follows the density of vibrational states of
bulk diamond [54, 58], with a pronounced peak at ω ≈ 150meV. The total HR factor is 4.48 in
this case. However, the coupling to low-energy (< 20meV) acoustic modes is very similar to
cases (i) and (ii); indeed long-range phonons are expected to be little affected by the presence of
the defect.

4.3. Comparison with experiment: luminescence lineshape and HR factors

In figure 4 we compare the luminescence lineshape ωL ( ) (equations (2) and (8)), calculated
using the HSE functional, with the experimental one. The agreement between theory and
experiment is extremely good. Not only is the overall shape of the luminescence band described
correctly, but all the specific features are described very accurately. In particular:

(i) The weight of the ZPL of the theoretical spectrum =w 3.8ZPL % is very close to the
experimental result =w 3.2ZPL %. Both of these quantities have been determined directly
from luminescence lineshapes shown in figure 4, as discussed in section 2.2. The

Figure 4. Measured (black solid line) and calculated (blue solid line) normalized
luminescence lineshapes for NV centres in diamond in the energy range 1.5–2.0 eV.
The calculations have been performed at the HSE level, as explained in the text. The
low-energy tail (< 1.5 eV) of the experimental spectrum is less reliable because of
calibration issues.
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theoretical HR factor S = 3.67 is thus also very close to the experimental HR factor
= ±S 3.85 0.05; the latter has been extracted from the experimental spectrum as described

in section 2.2.

(ii) Both the experimental and the theoretical band show about four increasingly broad phonon
replicas. The theoretical phonon frequency ω 0 = 65meV is in very good agreement with
the experimental value ω 0 = 64meV.

(iii) The fine structure near the ZPL, which is representative of the coupling to acoustic
phonons, agrees closely.

We conclude that calculations based on hybrid density functionals describe the vibrational
properties and the luminescence lineshape of NV centres with a very high accuracy.

In figure 5 we present luminescence lineshapes calculated using all the three different
theoretical approaches discussed in section 4.2. The experimental curve and the one that
corresponds to the HSE functional are the same as those in figure 4. The lineshape calculated at
the PBE level is qualitatively similar to the HSE one, but there are quantitative differences. In
particular, the weights of the first two phonon replicas are larger, and the overall band is
narrower. Figure 5 also shows that when bulk phonons are used instead, the calculated
luminescence lineshape bears no resemblance to the experimental curve: it is much broader and
has a very different fine structure. This result clearly shows that the consideration of the bulk
phonon spectrum is not sufficient to understand the phonon sideband, challenging the
discussion of [29]. Taking into account vibrational modes of the defect system is essential.

5. Analysis: localized versus delocalized phonon modes

In section 4.2 we mentioned that the 65meV phonon that dominates the phonon sideband, is not
a localized mode, but rather a vibrational resonance. This means that it is formed by a
continuum of vibrational modes, all of which have a larger weight close to the defect, but none
of which are strictly localized in real space. This mode gives rise to a peak in ωS ( ) with a full
width at half-maximum (FWHM) of about 32meV (figures 2 and 3).

Figure 5. Comparison of luminescence lineshapes calculated using the three different
theoretical approaches described in section 4.2 (curves (i)–(iii)) with the experimental
one (curve (iv)). (i) and (iv) are the same as in figure 4.
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We illustrate the fact that the 65meV is a vibrational resonance in the following way. For
each defect supercell studied we choose the individual phonon mode that has the largest HR
factor in the energy range 49–81meV (right axis, figure 2). The energy range corresponds to a
FWHM of the 65meV peak in the converged function ωS ( ). In figure 6(a), we plot this largest
value of the partial HR factor Sk as a function of the supercell size N. The value of Sk for this
mode decreases steadily, albeit with some oscillations, as a function of supercell size. Since the
total HR factor does not change much as the system size grows, the decrease of this particular Sk

is compensated by an increase in other phonon modes (figure 2). This is a signature of a
vibrational resonance, which is also called a quasi-local mode.

To gain more insight, we study the inverse participation ratio (IPR) for the mode k [59]:

=
∑α α

IPR
p

1
, (12)k

k;
2

Figure 6. Partial Huang–Rhys factors Sk ((a) and (c), equation (5)), inverse participation
ratios IPRk ((b) and (d), equation (12)), and vibrational patterns ((e) and (f)) for phonon
modes with frequencies ∼65 meV ((a), (b), and (c)) and ∼167 meV ((d), (e), and (f)).
Partial Huang–Rhys factors and inverse participation ratios are shown as a function of
the supercell size.
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where

∑Δ=α αp r . (13)
k

i
k i; ;
2

IPRk defined in this way measures the number of atoms onto which the vibrational mode is
localized. If, e.g., only one atom vibrates for a given mode, =IPR 1. If all M atoms in the
supercell vibrate with the same amplitude, IPR = M. Note that the definition in equation (12) is
different from the one used in [20] to analyze vibrational modes of the NV centre in a 216-atom
supercell, and is more in line with the traditional definition [59].

In figure 6(b), the IPRk for the most pronounced mode in the energy range 49–81meV is
shown as a function of the supercell size N. For all supercell sizes IPRk is but a fraction of the
total number of atoms M, but steadily increases with N, albeit with similar oscillations as for Sk.
This underpins the finding that the 65meV mode is a vibrational resonance. This resonance
represents the lionʼs share of the distortion of the defect geometry (cf equations (6) and (7)). It
has the largest amplitude on the four atoms surrounding the vacancy, and the vibrational pattern
is shown in figure 6(c). The N atom is vibrating along the defect axis, while the vibrational
vectors of the C atoms form an angle of ∼110° with this axis.

By analyzing partial HR factors and inverse participation ratios of all the modes we were
able to identify a few other, weaker resonances. These are modes with frequencies 161, 134,
and 120meV (in the order of decreasing localization). All of these weaker resonances were
recently identified in the experiment of Kehayias et al [29]. The 153meV resonance seen in the
same experiment is not very pronounced in our calculations. As a measure of localization we
define the ‘localization ratio’, β, which is the ratio of the number of atoms in the supercell
( =M N8 3) to the largest IPRk corresponding to one of these resonances:

β = ( )N IPR8 . (14)
k k

3

We obtain the actual value of β
k
by fitting the IPRk for a given mode with a function βN8 /

k
3 (see

figure 6(b)). The larger the ratio β
k
, the more pronounced the resonance. For a truly localized

mode in the limit → ∞M , β
k
would be infinite, since for a localized mode IPRk remains

constant as M increases. The results are summarized in table 1. For example, the localization

Table 1. Quasi-local and local modes of a1 symmetry that couple to the →E A3 3
2 optical

transition.

Quasi-local modes

Energy (meV) Localization ratio β
k

65−1 ∼11
120 ∼3
134 ∼6
161 ∼8

Local mode

Energy (meV) IPRk

167 ∼80
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ratio β
k
for the 65meV mode is ∼11. Values for the ‘localization ratio’ should be considered as

rough estimates, but they are useful when comparing different modes.
Together with these vibrational resonances, we do find one truly localized defect-induced

phonon mode. In figure 6(d) we show Sk as a function of the supercell size for a phonon mode
with a frequency ∼167meV, which is slightly (∼0.2meV) above the theoretical bulk phonon
spectrum. Increasing the size of the system, Sk approaches a constant value of ∼0.02. When the
size of the supercell grows, the IPRk of this mode also approaches a constant value of ∼80
(figure 6(e)). In analogy with shallow defect levels with energies close to bulk band edges, one
could name this mode a shallow defect-localized vibration. While this mode is ‘shallow’, half of
its total weight is distributed over six carbon atoms: three that are immediately adjacent to the
vacancy, and three more that are nearest neighbours of the first trio along the defect axis. The
vibrational pattern associated with this vibration is shown in figure 6(f). It is an optical mode
with vibrational vectors of all atoms only slightly off the z direction (by ∼14° ) due to the
influence of the defect. The participation of the nitrogen is negligible in this vibration.

The 167meV mode contributes less than 1% to the total HR factor of 3.67, and therefore
its role in the formation of the phonon sideband is not very significant. However, since this is a
truly localized vibrational mode, it can play an important role in other physical processes at NV
centres. Kehayias et al [29] recently found that a phonon mode that has the signature of a
localized vibration and an experimental energy of 169meV plays a noticeable role in the
infrared transition →E A1 1

1 . Due to very similar atomic geometries of the A3
2, A1 1 and E1

electronic states [11, 14, 15, 29] we suggest that the localized phonon mode found in our
current study is the same as the one observed in the experiments of Kehayias et al [29].

6. Conclusions

In this work we have developed a first-principles methodology to calculate the vibrational
structure of defect luminescence bands. Both localized, quasi-localized, and bulk phonons are
taken into account on equal footing. The methodology was applied to study the phonon
sideband pertaining to the 1.945 eV spin-triplet transition at NV centres in diamond.
Calculations based on hybrid DFT yield a luminescence lineshape and all related parameters
that are in excellent agreement with experiment. The phonon sideband is dominated by a
vibrational resonance with an energy of ∼65meV, but a few other, weaker resonances, are also
identified. 99 % of all atomic relaxations that contribute to the phonon sideband occur within
∼ Å12 of the defect, but the interaction with long-range acoustic phonons is also directly
manifest in the luminescence spectra close to the zero-phonon line. We find a truly localized
phonon mode slightly above the phonon spectrum of bulk diamond. While this mode, being
localized on ∼80 atoms, contributes little to the spin-triplet optical transition, it can play an
important role in other physical processes at this defect, as recent experiments suggest [29]. Our
findings provide a deeper understanding of the coupling of electronic states to a1 phonon states
at NV centres. The success of the computational methodology developed here provides
confidence that it can be fruitfully applied to other systems of high current interest that exhibit a
complex vibrational structure of luminescence bands [21–26].
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Appendix A. One-dimensional configuration coordinate diagram

The methodology outlined in section 2.1 relies on the use of the harmonic approximation. This
ensures the equivalence of formulations based on equations (6) and (7). Also, in section 2.3 we
have mentioned that the vibrational modes that are relevant to describe the phonon sideband of
the triplet luminescence are very similar for the two functionals, PBE and HSE, used in this
work. The purpose of this appendix is to illustrate these points.

We map the potential energy surface in the ground state and the excited state along the line
in the configuration space that linearly interpolates between the equilibrium geometries in the
two states. This special mode corresponds to a displacement of an atom α along the direction

=i x y z{ , , } that is proportional to Δ = −α α αR R Ri e i g i; ; . In this one-dimensional (1D) model the

generalized configuration coordinate (cc) Q for values of atomic positions αR i that correspond to

this displacement is = ∑ −α α α α( )Q m R R
i i g i

2
;

2
. The equilibrium geometry of the ground state

corresponds to Q = 0, while that of the excited states corresponds to Δ=Q Q, where

Figure A1. 1D cc diagram of the NV centre in the A3
2 ground state and the E3 excited

state calculated using the PBE and the HSE functionals. =E 1.945ZPL eV is the zero-
phonon line; ΔQ (equation A.1) is the mass-weighted atomic displacement between the
minima in the ground and the excited state. For a more meaningful comparison the E3

potential energy curve as calculated in PBE is shifted horizontally but Δ Δ−Q QHSE PBE.
The calculations used a × ×4 4 4 (512-atom) supercell.
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∑Δ Δ=
α

α αQ m R( ) . (A.1)
i

i
2 2

A related quantity Δ Δ= ∑α αR R( )
i i

2 2 . is also useful in analyzing theoretical results, and can be
alternatively used as a measure of atomic displacements during optical excitation. The plot that
shows the dependence of total energies in the ground and the excited states E e g{ , } as a function of

Q is called the cc diagram [32] (cf figure 1(c)).
In figure A1 we present an explicit calculation of the 1D cc diagram for the NV centre

(results from the × ×4 4 4 supercell were used). The HSE calculations (filled disks) yield
ΔQHSE = 0.71Å · amu1/2 and Δ = ÅR 0.20 .HSE The PBE calculations (open disks) yield

somewhat smaller values, ΔQPBE = 0.62Å · amu1/2 and ΔRPBE = 0.18Å. (In passing, we note that
in their seminal paper Davies and Hamer [16] also estimated the total displacement ΔR based on
a simple model for the defect. Despite the fact that their model turned out to be not entirely
correct, their estimated Δ =R 0.18 Å is astonishingly close to accurate first-principles results.)
In order to more meaningfully compare HSE and PBE results, we show the 1D cc diagram
calculated at the PBE level on the same graph, but shift the potential energy curve of the excited
state horizontally to Δ=Q QHSE. Both the HSE and PBE curves are adjusted vertically to match
the experimental =E 1.945ZPL eV, as discussed in section 3. A simple visual inspection of
figure A1 then shows that if plotted this way the potential energy curves determined in the two
approaches lie virtually on top of each other.

More quantitatively, we have performed numerical fits to these one-dimensional potential
energy curves using the function Ω β= +E Q Q Q( ) 1/2 2 2 3. It can be easily shown that Ω
determined in this way is the mean square average of all the phonon modes contributing to the
phonon sideband, the weight of phonon mode k being given by q

k
2 (equations (6) or (7)). For the

two functionals, these average frequencies differ by 1% in the ground state, and 1.6% in the
excited state, and in all cases the coefficient β is essentially negligible. These findings justify the
assumptions at the beginning of this section.

The similarity of vibrational modes calculated in PBE and HSE can also be demonstrated
by a direct calculation of the vibrational spectrum of the supercell. Because of the high
computational cost of the HSE calculation, we have performed this calculation only for the
smallest × ×2 2 2 supercell. Vibrational modes and frequencies calculated using the two
functionals are indeed very similar, supporting the conclusion achieved by analysing figure A1.
Therefore, it is a very good approximation to use vibrational modes calculated at the PBE level
in all calculations, and we adopt it for the present study.

The main difference between PBE and HSE functionals are the atomic relaxations ΔQ (or
⃗ − ⃗R Re g). It is because of this difference that spectral functions of electron–phonon coupling

ωS ( ) and total HR factors (figure 3) are different in the two approaches.

Appendix B. Calculations for very large supercells

A direct evaluation for the dilute limit, i.e., the use of very large supercells that would yield a
converged ωS ( ), is nearly impossible not only for an HSE hybrid functional, but also for a less
expensive PBE functional. This applies, in particular, to the calculation of vibrational modes.
To obtain results for large systems, we have used the following methodology.
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For the two smallest supercells, i.e., × ×2 2 2 (64 lattice sites) and × ×3 3 3 (216 sites) a
direct approach has been applied. In particular, partial HR factors Sk have been evaluated using
equations (5) and (6). Vibrational modes and frequencies have been determined by
diagonalizing dynamical matrices obtained directly from the supercell calculation.

For larger supercells we have used an alternative approach. First, we performed
constrained geometry relaxations for the × ×4 4 4 supercell (512 lattice sites) with a defect in
the middle of the supercell. In the calculations for the excited state the atoms within 3Å of the
vacancy were allowed to relax, while the remaining atoms were kept in their ideal lattice
positions (figure B1(a)). This procedure yields zero forces αFe i; within this chosen radius (white
inner circle in figure B1(a)). The forces αFe i; are non-zero for the atoms that were kept in their
bulk positions. However, actual calculations indicate that the forces are appreciable only within
∼7 Å away from the vacancy (i.e., about 4Å away from the atoms that were allowed to relax,
indicated as an outer yellow circle in figure B1(a)). The crucial point is that there are no net
forces exerted on atoms that are at the boundary of this supercell. Subsequently, we kept the
geometry of the defect as optimized according to this procedure, but determined the forces αFg i;

Figure B1. The methodology to determine the spectral function ωS ( ) for large
supercells. (a) Constrained geometry optimization in the × ×4 4 4 supercell for the
electronic excited state; (b) single-point calculation in the × ×4 4 4 supercell for the
electronic ground state using the geometry obtained in (a); (c) and (d) embedding
calculations obtained in the previous two steps into a larger supercell × ×N N N. For
both the × ×4 4 4 and the × ×N N N ( >N 4) vibrational modes and frequencies
have been determined as described in the text.
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on atoms when the electronic state is changed to that of the ground state (figure B1(b)). The
resulting forces are non-zero in the entire region, shown as a yellow circle in figure B1(b), but

essentially vanish beyond it. These two calculations yield the difference −α α( )F Fe i g i; ; needed to

determine partial HR factors via equations (5) and (7). The fact that the forces are essentially
zero beyond the yellow circle in figures B1(a) and (b) does not mean that these atoms stay in
their bulk position. If the constraints were relieved, these atoms would move to find their
equilibrium positions during a full geometry optimization, since the movement of their
neighbours during this optimization would result in a build-up of forces. The point is that
equation (7) includes this automatically.

To determine the vibrational spectrum for this supercell we have made use of the fact that
in covalent semiconductors the dynamical matrix is short-ranged. For example, tests show that
the inclusion of five nearest-neighbour shells is sufficient to obtain a vibrational spectrum of
bulk diamond. Thus, if the atoms in the defect system are further away from each other than
4Å, we set the dynamical matrix element to 0. Otherwise, if one of the atoms is within Å2.5 of
the vacancy or the nitrogen atom, the matrix element is taken from the calculation of the 3 × 3
× 3 supercell. For other pairs we use bulk diamond values. The choice or parameters leads to a
converged vibrational spectrum of the × ×4 4 4 defect supercell. A similar procedure to
construct the dynamical matrix was recently used for defects in GaN by Shi and Wang [60].
Partial HR factors are then determined from equations (5) and (7).

For larger supercells × ×N N N ( >N 4) the procedure is as follows. First, the two
× ×4 4 4 defect supercells from the previous steps were embedded into a larger × ×N N N

supercell for both the excited (figure B1(a)) and the ground state (figure B1(d)). This

automatically yields the force difference −α α( )F Fe i g i; ; for this larger system. The wavefunction

of the NV centre is very localized, and thus we might expect that the actual calculation for a

larger supercell, were it possible, would yield very similar force difference −α α( )F Fe i g i; ; . It is

now clear why the formulation based on equation (7) is hugely advantageous. When the atoms
away from the defect are kept fixed in ideal bulk positions during the geometry optimization in
figure B1(a) this excludes the elastic interaction between periodically repeated replicas of the
defect, and eventually enables embedding this smaller system into a large one. Vibrational
spectra for these larger supercells have been determined in the same way as for the × ×4 4 4
supercell. Using these techniques we were able to study supercells as large as × ×11 11 11
(10648 lattice sites). Our procedure yields results of nearly the same quality as if explicit first-
principles calculations were performed for these large supercells.

Appendix C. NV centre in the 13C diamond lattice

In all above discussions, we have considered the NV centre in natural diamond, with the atomic
mass of carbon atoms set to 12.0111 amu. This is useful when comparing calculations to
ensemble measurements, as done in the present work. Our results apply to NV centres in C12

diamond as well. We have verified that the frequency of the dominant phonon mode
ω 0 = 65.0meV, the HR factor S = 3.67, and the Debye–Waller factor wZPL = 2.4% in C12

diamond are within 0.1 % of the values in natural diamond.
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It is of interest, however, to study NV centres in C13 diamond, where the different mass of
carbon atoms may lead to more noticeable changes. The comparison of the main parameters
pertaining to the vibrational sideband of NV centres in natural (or C12 ) diamond versus C13

diamond is shown in table C1 . Calculations have been performed at the HSE level. Compared
to NV centres in natural diamond, the total HR factor S increases by a factor of 1.035, i.e.,

slightly less than a factor ≈13/12.0111 1.04 which would be expected if only carbon atoms
would couple to the optical transition. This corresponds to a decrease of wZPL from 3.8% to
3.4%. The energy of the most pronounced phonon decreases only by a factor of 1.02, from 65.0
to 63.4meV.
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