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ABSTRACT 

Strained-layer heterojunctions and superlattices have recently shown tremendous 
potential for device applications because of their flexibility for tailoring the electronic band 
structure. We present a theoretical model to predict the band offsets at both lattice­
matched and pseudomorphic strained-layer interfaces. The theory is based on the local­
density-functional pseudopotential formalism, and the "model solid approach" of Van de 
Walle and Martin. The results can be most simply expressed in terms of an "absolute" 
energy level for each semiconductor, and deformation potentials that describe the effects 
of strain on the electronic bands. The model predicts reliable values for the experimentally 
observed lineups in Si/Ge, GaAs/lnAs, and ZnSe/ZnS systems, and can be used to ex­
plore which combinations of materials and configurations of the strains will lead to the 
desired electronic properties. 

INTRODUCTION 

In recent years, tremendous developments have occurred in the field of semiconduc­
tor heterojunctions and superlattices and their applications in electronic devices. The in­
troduction and improvement of novel growth techniques (in particular molecular beam 
epitaxy) have made it possible to produce extremely high-quality epitaxial interfaces, even 
between materials which differ in lattice constant by several percent. This lattice mismatch 
can be accommodated by uniform lattice strain in sufficiently thin layers. Such a 
"pseudomorphic" interface is characterized by an in-plane lattice constant which remains 
the same throughout the structure. The strains can cause profound changes in the elec­
tronic properties, and therefore provide extra flexibility in device design. Knowledge of 
the discontinuities in valence and conduction bands at semiconductor interfaces is essential 
for the analysis of the properties of any heterojunction, but has remained rather limited 
due to experimental difficulties, and the absence of reliable theoretical predictions. 

Only recently has it become possible to perform first-principles calculations of the 
band offsets at a semiconductor interface. Such calculations, based on local-density­
functional theory and ab initio pseudopotentials, have been carried out for a wide variety 
of lattice-matched interfaces,' and also for representative examples of strained-layer 
interfaces. 2 Unfortunately, the computational complexity of such calculations is very high, 
which limits their use as a tool in the exploration and design of novel heterostructures. 
Particularly in the case of strained-layer interfaces, carrying out a self -consistent calcu­
lation for every imaginable strain configuration would be unfeasible. This clearly illus­
trates the need for a reliable model theory that can predict band offsets for a wide variety 
of interfaces without the need for heavy calculations. Several model theories have been 
developed in the past, with variable degrees of success. 3 The so-called "model solid" the­
ory that we will discuss here yields results for lattice-matched interfaces which are at least 
as good as those achieved by other model theories. Even more importantly, it provides a 
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natural way of dealing with strained-layer interfaces. None of the other model theories 
includes a prescription for incorporating strain; attempts to add these effects a posteriori 
have not been very successful so far. In this paper, we will therefore concentrate on the 
features of the model-solid theory that allow us to examine strained layers. 

THE MODEL SOLID THEORY 

The model theory, and its connection to the full first-principles calculations, has been 
described in detail elsewhere. I .'.S Here we will only summarize the underlying theory for 
the purposes of the present applications. First, we point out that throughout this paper 
we assume all interfaces to be ideal, i.e. the bulk atomic structure of each of the semicon­
ductors is maintained up to the interface. For strained-layer interfaces, we include the 
appropriate strains in each of the materials to construct a pseudomorphic interface. 

Our theory relies on two main components: first, the generation of an accurate band 
structure, and second, the alignment of this band structure on an "absolute" energy scale. 
The first part is accomplished by performing density-functional calculations on individual 
bulk semiconductors, described by ab initio pseudopotentials. 6 1t is well established by now 
that such calculations produce reasonable band structures, and that changes in the bands 
induced by hydrostatic or uniaxial strains are reliably predicted. A discussion of intrinsic 
deficiencies of density-functional theory and their effect on band lineups was presented in 
Refs. 1 and 2. 

The second part of the problem is that of establishing an absolute energy scale. Such 
an absolute reference can only be present when the energies in the bulk semiconductor can 
be referred to the "vacuum level". Since typical bulk calculations are carried out for an 
infinite crystal, no such reference is available; the calculated energy bands are referred to 
an average electrostatic potential within the solid, which is only defined to within an arbi­
trary constant. Our model consists of a particular way of relating this average electrostatic 
potential to the vacuum level. This puts all calculated energies on an absolute energy scale, 
and allows us to derive band lineups by simply subtracting values for individual semicon­
ductors. The common reference is accomplished by modeling the solid as a superposition 
of neutral atoms. In each atom, the electrostatic potential is rigorously defined with re­
spect to the vacuum level. The average electrostatic potential in this "model solid" is 
therefore, by superposition, also well specified on the absolute energy scale. We should 
emphasize that this choice of an absolute energy scale is certainly not unique. It is, how­
ever, well defined by our prescription of superposition of neutral atomic7 charge densities, 
calculated within the LDA for the pseudopotentials that we use in the band-structure cal­
culations. 

Table I contains an overview of our results for elemental, III-V and II-VI semicon­
ductors. Some of the values for lattice constants listed in Table I are slightly different from 
the exact experimental values. That is because, in an attempt to establish classes of closely 
lattice-matched materials, we decided to neglect any mismatch that is less than ~O.50/0. 
Such a small mismatch would only lead to strain effects in the lineups which are signif­
icantly smaller than the accuracy of the present calculations (and of most experimental 
measurements). Listed in the Table are values for E,.,v, which is the weighted average over 
the three uppermost valence bands at r (known as the light and heavy hole bands, and the 
spin-orbit split-off band). 

Besides the position of the valence band on an absolute energy scale, E,.avo the 
model-solid approach can also give us information about the variation of this energy when 
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TABLE I 

Lattice constant a, spin-orbit splitting !:J.o, and gap Eg of various semiconductors.1O Values 

of E,.,. (the weighted average over the three uppermost valence bands at f), 

a, = d(E,.,,)/d(lnQ), a, = d(EJ/d(lnQ), and a = deE, - E,,,)/d(lnQ) are calculated 

within the model-solid approach. For indirect-gap semiconductors, values of Eg, a, , and 

a are given for both direct and indirect gaps. Lattice constants are in A, all other values 

are in eV. 

=============================================== 

a (A) !:J. o adlT alnd 

Si 5.43 0.04 3.37 1.17 -7.03 2.46 1.98 -0.48 4.18 1.72 

Ge 5.65 0.30 0.89 0.74 -6.35 1.24 -8.24 -9.48 -1.54 -2.78 

GaAs 5.65 0.34 1.52 -6.92 1.16 -7.17 -8.33 

AlAs 5.65 0.28 3.13 2.23 -7.49 2.47 -5.64 -8.11 4.09 1.62 

In As 6.08 0.38 0.41 -6.67 1.00 -5.08 -6.08 

GaP 5.43 0.08 2.90 2.35 -7.40 1.70 -7.14 -8.83 3.26 1.56 

AlP 5.43 3.63 2.51 -8.09 3.15 -5.54 -8.70 5.12 1.97 

InP 5.87 0.11 1.42 -7.04 1.27 -5.04 -6.31 

GaSb 6.08 0.82 0.75 -6.25 0.79 -6.85 -7.64 

AISb 6.08 0.65 2.32 1.70 -6.66 1.38 -6.97 -8.36 3.05 1.67 

InSb 6.48 0.81 0.24 -6.09 0.36 -6.17 -6.53 

ZnSc 5.65 0.43 2.83 -8.37 1.65 -4.17 -5.82 

ZnS 5.40 0.07 3.84 -9.15 2.31 -4.09 -6.40 

CdTc 6.48 0.93 1.59 -7.07 0.55 -3.96 -4.52 

HgTc 6.48 1.05 -.30 -6.88 -.13 -4.60 -4.48 

=============================================== 
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strain is present in the system. Uniaxial components of the strain can have a profound 
effect on degenerate bands; they lead to splittings of the valence bands which we will dis­
cuss later. These splittings are averaged out, however, when considering the average 
E,."" which will be subject only to shifts due to the hydrostatic component of the strain 
(corresponding to a volume change). Once again, two contributions occur in the calcu­
lation. On the one hand, there is the effect on the band structure when the solid is com­
pressed; the bands will shift with respect to the average potential in the solid. On the other 
hand, the average potential itself will be shifted due to the (hydrostatic component of the) 
strain, through the volume-averaging of the potential. The total effect leads to a 
hydrostatic deformation potential for the valence band: 

(1) 

which expresses the shift (in eV) in E,.,. per unit fractional volume change. A similar de­
finition applies to the conduction band deformation potential a,. The band-gap defor­
mation potential is of course equal to a = a, - a,. Values for a" a" and a are listed in 
Table J. 

The list of semiconductors in Table I is divided into several blocks, each of which 
contains materials with similar characteristics. The model-solid approach is expected to 
give the most reliable results for lineups between materials belonging to the same block. 
When two semiconductors belong to different blocks, the resulting lineups should be re­
garded with more caution. We also point out that within the model-solid theory no dis­
tinction exists between different interface orientations. The band lineups at 
lattice-matched interfaces will therefore be independent of interface orientation, which has 
been confirmed by full interface calculations.' For strained-layer interfaces, the strains 
may of course depend on the particular orientation, and thus affect the lineups. 

RESULTS AND COMPARISON WITH EXPERIMENT 

Let us illustrate how to derive band offsets for a heterojunction A/B starting from 
the values in Table I. For lattice-matched interfaces, the discontinuity in the average va­
lence bands is 

Ll.Ev,av = E~.av - E~av (2) 

The sign convention is such that Ll.E"" is positive when the valence band in B is higher in 
energy than the valence band in A. To obtain the position of the individual valence bands 
with respect to the average, the spin-orbit splitting Ll. o (also listed in Table I) has to be in­
troduced. The topmost valence band in A is then given by 

E~ = E~av + Ll.~/3 (3) 

As an example, we find for AlSb/GaSb: Ll.E",=(-6.25)-(-6.66)=0.41 eV, and 
E,=0.41 +(0.82/3)-(0.65/3)=0.47 eV. This value i~ very close to the experimental val­
ues: 0.41 to. J cV, obtained by Gualtieri et al. from XPS measurements," and 0.45 ±0.08 
eV, obtained by Menendez et al. with a light-scattering technique. 9 

For strained-layer interfaces, one first has to determine the strain components in 
each of the materials, These depend on the boundary conditions at the pseudomorphic 
interface, the thickness of the layers, and macroscopic elastic constants, as described in 
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Ref. 2. Here we assume that the strain tensor is known for each material. The positions 
of E, ... , will be affected by the volume change in the layers. The relation 

(4) 

expresses Ev." in terms of its value in the unstrained material (i.e. the equilibrium-volume 
value from Table I), the hydrostatic deformation potential for the valence band, a" and the 
fractional volume change Mljn= (f" + €yy + f,,). ~Ev.a, then follows immediately. The 
splitting of the valence band is now caused by uniaxial strain as well as by spin-orbit ef­
fects. The strain splitting can be obtained using the appropriate deformation potentials 
and strain components. Expressions for (111), (l 10), and (l00) strains are listed in Ref. 
2; the deformation potentials (b and d) can be calculated (see examples in Refs. 2,4), or 
taken from experiment.lO Finally, strain and spin-orbit splittings are combined2 to give the 
positions of the three valence bands with respect to E,.a" and consequently the valence­
band offsets. Conduction bands can be positioned in a similar manner, using the E,." and 
band-gap values listed in Table I, and including the appropriate shifts and splittings due to 
strain. 

As an example for the derivation of lineups at a strained-layer interface, we choose 
a ZnS/ZnSe interface." A thin layer of pure ZnS, deposited on a (001) ZnSe substrate, is 
subject to strains: e" = Eyy =0.046, <u=-0.058. This results in a volume change 
~~l/n=0.035. From Table I and Eqn.(4): 

E~'~~C = -8.37 eV, and E~~~ = -9.15 + 2.31 x 0.Q35 = -9.07 eV. , , 

This leads to ~Ev.av=0.70 eV (higher in ZnSe). Adding in uniaxial strain and spin-orbit 
spliltings" leads to ~E,=0.58 eV. For the conduction bands, we find: 

E~nSc = E~,~~e + ~~nSc /3 + F;nSe = -8.37 + (0.43/3) + 2.83 = -5.40 eV, 

E~nS = E~.~~'o + ~~nS /3 + Ein~ + ae x ~n/n 
= -9.15 + (0.07/3) + 3.84 + (-4.09) x 0.Q35 = -5.43 eV. 

This results in ~Ec=0.03 eV. This very small value for ~Ec is characteristic for all 
ZnS/ZnSe interfaces, and agrees with experimental observations." 

Good agreement between model-solid predictions and experiment was also found for 
Si/Gc strained-layer interfaces,' and for many lattice-matched junctions.!",S.l2 We have 
also compared the lineups derived from Table I with those calculated from full self­
consistent interface calculations, where available.1.2,4.'.!2 The results of the model are al­
most always within 0.2 eV of the fully self-consistent values, both for lattice-matched and 
strained-layer interfaces. This theoretical justification, along with favorable comparisons 
with experimcnt, gives us confidence in the model and values presented here. 

Table T only contains results for pure materials. Results for alloys can, to a reason­
able approximation, be obtained by interpolation.2 As an example, we consider 
Ga 47In "As grown on a (IOO) InP substrate and find ~Ev=0.34 eV. Lang et al.13 applied 
the novcl tcchnique of admittance spectroscopy to this lattice-matched interface, leading 
to a valencc-band offset of 0.35 eV; Skolnick et al. I

' found ~E, = 0.38 eV. Both values 
are in cxccllent agreement with our theoretical prediction. When the composition of the 
Ga,II1,_,As alloy is changed, strains will be introduced during pseudomorphic growth on a 
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InP substrate. The band alignments in the resulting heterostructures have recently been 
analyzed by People," using our values for the lineups. 

CONCLUSIONS 

We have presented a theoretical model to calculate band lineups at lattice-matched 
and straincd-Iayer interfaces, and tabulated parameters to calculate band lineups for a 
wide variety of semiconductors. The important effects due to strains in the layers were 
emphasized. These strains are determined by the lattice constants (i.e. choice of materials 
and alloy composition), the boundary conditions (i.e. choice of substrate), and the thick­
ness of the layers (in a free-standing superJattice). This provides wide flexibility in the 
design of new heterostructures. The model and values presented here provide a basis for 
analysis and design of novel interface structures. 
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