Theoretical calculations of semiconductor heterojunction discontinuities
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We have performed self-consistent density functional calculations on semiconductor
heterojunctions, using ab initio nonlocal pseudopotentials, and have derived valence band
discontinuities for many different interfaces between both lattice-matched and strained epitaxial
layers. The agreement with reported experimental values is very reasonable. Based on the
information obtained from the interface calculations, we have developed a new and simple
approach to derive band discontinuities. In this scheme, the lineup of potentials between two
materials is determined by the difference in average potentials which are calculated for a “model
solid” consisting of neutral, spherical atoms. Band structures for the bulk solid are then aligned
according to these average potential positions. This is a valuable ansatz which, for many cases,
yields results close to those obtained from full self-consistent interface calculations. We also
discuss examples, such as polar interfaces, where this simple ansatz is not sufficient.

I. INTRODUCTION

The band alignment at a semiconductor heterojunction is
the single most important property for the characterization
and design of novel heterostructure devices, such as quan-
tum well lasers and high-mobility modulation-doped field-
effect transistors. Recently, a lot of attention has been fo-
cused upon the determination of revised values for the
GaAs/AlAs system,' and it is to be expected that similar
efforts will be made to establish the experimental values
equally well for other systems. Theoretical analysis of the
problem is necessary to understand the underlying mecha-
nism of the lineups, and to be able to predict values for new
structures. The central problem is the derivation of the po-
tential shift which occurs at the junction of two materials. In
the neighborhood of the interface, the electron distribution
will clearly differ from the bulk, setting up a dipole moment
which will cause shifts in the bands, even far from the inter-
face. Nevertheless, several heterojunction theories®™ are
based only on (calculated or experimental) information
about the bulk materials, without taking the actual elec-
tronic structure of the interface into account. In particular,
Tersoff’s theory* has received considerable attention recent-
ly because it produces the best results, is able to deal with
both Schottky barriers and semiconductor heterojunctions
in a unified fashion, and is based upon simple screening argu-
ments. In this paper we discuss the extent to which calcula-
tions support the idea that band alignments can be found
from bulk information, and we present a new simple model.

The only way to obtain a full picture of the interface prob-
lem is to carry out self-consistent calculations in which the
electrons are allowed to adjust to the specific environment
around the junction. Density functional theory® provides a
fundamental theoretical framework to address this problem,
and has the advantage that one can use the same methods
which have been applied to a wide variety of solid state prob-
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lems.® Calculations have been done years ago by Pickett et
al.,” which followed this ab initio approach, except in one
respect: the use of empirical pseudopotentials. In our stud-
ies, we have used the more recent ab initio pseudopoten-
tials,® which provide a better justified starting point. We
have applied the method to both lattice-matched and
strained-layer® interfaces between pairs of elemental, III-V
and II-VI semiconductors. All interfaces considered here
are ideal, in the sense that the atoms occupy the positions of
the bulk lattice structure up to the interface. For the
strained-layer cases, strains are chosen such as to minimize
the elastic energy. A description of these computations has
been presented elsewhere.'*!!

Apart from deriving explicit results for valence band off-
sets, we were able to draw some general conclusions from
these calculations.!' For lattice-matched, nonpolar inter-
faces, we noticed that the band offsets were independent of
orientation, and obeyed the transitivity rule, 1.e., the band
offsets between two materials could be determined as the
difference between the offsets of each of the materials with
respect to a third. This additivity rule also applies to nonpo-
lar, strained-layer interfaces, as was checked for the Si/Ge/
GaAs system,'? provided that the materials are kept in iden-
tical strain conditions. All this seemed to indicate the possi-
bility of assigning a characteristic energy to each semicon-
ductor, to which all the band energies would be referred.
Band offsets would then be obtained by lining up the band
structures of two materials according to these characteristic
energies. In Sec. II, we will describe how we define such a
value by considering a reference model solid, and illustrate
the procedure with the example of the Si/Ge interface. Sec-
tion III will contain a list of results, and comparisons with
full interface calculations, other theories, and experiment. It
is very important to recognize that this approach is only
valid within the above-mentioned restrictions regarding ma-
terials and interface orientations, and that deviations will
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certainly occur in other cases. Examples where the approach
does not apply will also be discussed.

ii. DEFINITION OF A REFERENCE MODEL SOLID

In previous work'®!'"!'* we have obtained charge densities
and potentials by performing full density functional calcula-
tions on a supercell which includes both materials. Such self-
consistent calculations tend to be complicated and time con-
suming. Our goal here is to abstract essential features of
these calculations, and to investigate the possibility of deriv-
ing the potential shift purely from information about the
bulk materials. The lineup of the electrostatic potentials is
the only part of the problem determined by the interface; all
other questions are adequately treated by bulk calculations.
The fundamental difficulty is that, because of the long range
of the Coulomb interaction, the zero of energy is undefined
for an infinite (bulk) crystal, and so there can be no refer-
ence with which to compare the potentials for two different
solids. Such an absolute scale only enters into the problem
when one does not deal with an infinite solid, but instead the
crystal is terminated, i.e., by a surface. Unfortunately, sur-
face calculations tend to be even harder than interface calcu-
lations. We therefore propose to derive the potential shift by
using a simple representation of the bulk materials. We con-
sider a “‘model solid” which will provide a reasonable de-
scription of certain properties of the material, while being
significantly easier to analyze.

We construct the model solid by taking a superposition of
neutral atomic spheres. The potential outside each such
sphere goes exponentially to (an absolute) zero; this will be
the zero of energy for the model solid. When we use such
neutral, spherical objects to construct a semi-infinite solid,
the presence of a surface will not induce any shift in the
average potential, since no dipole layers can be set up. This
feature of the model was also stressed in earlier work that
used the overlapping spherical atomic charge-density ap-
proximation, for instance to calculate work functions."
This also means that the potential shift between two solids
will only depend on “bulk” properties, and not on the specif-
ic arrangement of atoms at the interface.

One has to check, of course, that such a model solid can
adequately represent the real crystal. This is not difficult to
imagine in the case of elemental semiconductors like Si or
Ge, but somewhat harder to understand for materials in
which the bonds have more of an ionic character, such as the
II-V or even the [I-VI compounds. Apart from the a pos-
teriori justification that the obtained results are quite good,
we can also rely on information obtained from pseudopoten-
tial'* or tight-binding'® calculations on bulk materials. Ex-
amination of the distribution of electrons in the bonds shows
that the number of electrons around each atom is approxi-
mately equal to its nuclear charge, i.e., one can still talk
about “‘neutral spheres.”

Full information about the atomic potential can be ob-
tained by performing an atomic calculation (of the Herman-
Skillman type). Since all our calculations for the solid are
based on pseudopotentials, we actually perform the atomic
calculations on the “‘pseudoatom,” obtaining the potential
and charge density. We now must find the average potential
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in the model solid, which is a superposition of atomic charge
densities. The total potential is the sum of ionic, Hartree, and
exchange and correlation potentials:

VI= Vion,l_+_ VH+ ch. (1)

The superscript / on V™ reflects the fact that we are work-
ing with nonlocal pseudopotentials.® The choice of angular
momentum component does not influence the final results,
so long as we consistently use the same angular momentum
component of the pseudopotential as our reference. The first
two terms in Eq. (1) are linear in the charge density, and can
therefore also be expressed as a superposition of atomic po-
tentials. Their average value in the solid is

Vel 4y =% (I/Q)I(V§°“"+ Vihdr, (2)
~
where () denotes the volume of the unit cell, and the index i
runs over all atoms in the unit cell. Convergence is no prob-
lem in the numerical integration, since for each neutral atom
the long-range part of the ionic potential (which is the same
for each /) is canceled by the Hartree potential.

The exchange and correlation potential ¥ is not linear in
the charge density, and can therefore not be expressed as a
superposition of atomic potentials. This contribution, how-
ever, is local in nature and does not depend upon the specific
way in which we terminate the solid. It can easily be calculat-
ed for a bulk solid, and added in afterwards. Since the local
exchange and correlation potentials are proportional top'”?,
we expect their average to scale with the volume as ',
Tests have shown that this way of deriving the exchange and
correlation contribution to the average potential reproduces
the actual values, found from supercell calculations, to bet-
ter than 0.02 eV.

We illustrate the procedure with the example of a Si/Ge
(001) interface between cubic Si and strained Ge.'® The
lattice constant in the plane of the interface is fixed to the Si
value of 5.43 A, and the Ge side is appropriately strained to
minimize the elastic energy. To perform the atomic calcula-
tions, we have to choose a configuration, i.e., the occupation
x and y of the s and p orbitals: s*p” (the d character of the
bonds is small in the semiconductors that we studied here).
Naturally, we want this choice to be as close as possible to
the configuration that an atom would have in the solid. To
obtain this type of information, we have used results from
tight-binding theory'* for Si: 5'*¢ p***; and for Ge: s'* p*°.
The average potentials derived from free-atom calculations
tend to be rather sensitive to the choice of configuration. In
Si, for instance, going from an sp® to an s?p? configuration
shifts the average potential up by 0.82 eV. In Ge, the corre-
sponding shift is 0.84 eV. Even though we may not be sure
which configuration best represents the solid, it is to be ex-
pected that the configurations will be rather similar for the
two materials on either side of the interface; this makes the
difference in potentials far less sensitive to this choice. This
issue is not so clear in the case of compound semiconductors,
which may introduce a larger uncertainty in the values de-
rived for those cases.

We then carry out the atomic calculations on the pseudo-
atom in the configuration s* p”, and evaluate the integral in
Eq. (2). From that equation, it also follows that the average
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ionic and Hartree potentials are proportional to 2 ~'. Using
the values of the volume of the unit cell in Si and Ge (taking
the deformation due to strain into account), we can derive
the average potentials, remembering that there are two iden-
tical atoms in the bulk unit cell. Choosing the / = 1 angular
momentum component (as in Ref. 10}, this leads to the fol-
lowing values of (F©°=! 4 ¥H): —9.02 eV for Si, and
— 8.30 eV for Ge. The exchange and correlation contribu-
tions to the average potentials are derived from the values
V= —9.18 eV and VX = —8.80 eV for bulk Si at
a=543 A andbulk Geata = 5.65 A, respectively. We use
the '3 rule to scale them to the appropriate volume; this
changes the value for the strained materialto Vi, = — 8.95
eV. Finally, we add up the contributions for the individual
materials, and find the shift in the total potential on either
side of the interface: Vg, — Vg = (—17.26 V)
— (— 18.20eV) = 0.94 eV. This is to be compared with the
value obtained from the full self-consistent calculations on
the interface, using the supercell technique: AV = 0.85 eV.
The agreement is very reasonable.

To get information about band discontinuities, we still
have to perform the band calculations for the bulk materials,
i.e., cubic Si and appropriately strained Ge. The bulk calcu-
lations were performed with a 12 Ry cutoff. Tests have
shown that the choice of this cutoff is not critical for deriving
the valence band lineups. We find that the valence band
maximum in Siis 11.19 eV above the average potential ¥g;.
In Ge, the strain along (001) splits the top of the valence
band. The topmost valence band occurs at 11.08 eV, and the
average energy of the three I';s valence bands is 10.88 eV
above ¥ .. From our results above, we had AV = 0.94 eV.
This leads to a discontinuity in the topmost valence band of
0.83 eV (upward step in going from Si to Ge). Or, if we look
at the average valence band energy: AE, ,, = 0.63 eV.

lll. RESULTS AND DISCUSSION

In Table I we give an overview of our results for strained-
layer systems. The specific strain situation is characterized
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by the interface orientation, and by the parameter g, the
lattice constant in the plane of the interface (g, = 5.43 A
corresponds to an interface between cubic Si and strained
Ge,aq = 5.65 A to the other extreme: cubic Ge and strained
Si). We give results for AE,, the discontinuity in the tops of
the valence band, and for AE,,,, the discontinuity in the
weighted averages of the valence bands. Spin-orbit splitting
effects were included a posteriori (the general trend for the
systems described here is that spin-orbit effects increase all
the values of the discontinuities by approximately 0.1 eV,
which explains the difference with the results quoted in Ref.
10, which did not include spin-orbit splitting).

For strained-layer systems, the model solids should be
strained appropriately, and shifts in the potentials will occur
because of the volume change [see Eq. (2)]. From Table |, 1t
is clear that this approach describes the qualitative and even
the quantitative features of the strain effects very well. Look-
ing at it from another angle, this also indicates that the influ-
ence on the potential shifts is mainly a consequence of the
volume change. This has been confirmed by studying some
deformation potential problems'® with the model solid ap-
proach, and finding very good agreement with the full self-
consistent calculations.

We have also studied a variety of lattice-matched (110)
interfaces. The following configurations'’ were used in the
free-atom calculations: Al, s''p'*; As, s'7°p*?*; Ga,
sl.23 1.77 ., GC, B 44p2 .56, In, 1. 38Pl 62 P sl 75 3 25 Sb
Sl 75p3 25, Se, 1. 86p4.14, Sl, 1. 46p2 54; Zn, IR 02p098 . The re-
sults are given in Table II. The column “empirical pseudopo-
tentials” contains values derived by performing self-consis-
tent density functional calculations very similar to ours, but
with empirical pseudopotentials.” We also list values ob-
tained by means of the heterojunction theories of Harrison®
and Tersoff.* Also shown in Table I are experimental data
from various sources. At the present time, not all of these
values are equally reliable. A striking example is that of the
GaAs/AlAs interface, for which “Dingle’s 85/15 Rule”!”
had become widely accepted; AE, = 0.15 AE, , where AE,
is the difference in direct band gaps. Since last year, however,

TABLE 1. Heterojunction band lineups for different Si/Ge and Si/GaAs interfaces, characterized by interface orientation and a; . Results are from self-
consistent interface calculations (S.C.1.C.) (Refs. 10and 12), and from the present model solid approach. AE, is the discontinuity in the top of the valence
bands. AE, ,, is the discontinuity in the average energy of the valence bands at I". In all cases, the convention is used that a positive value for the discontinuity

at a junction A/B corresponds to an upward step in going from A to B.

AE, (eV) AE, (eV) AE,,, (eV) v (€V)
Orientation a, (A) (S.C.I.C) (model solids) (S.CI1C) (modcl solids)
Si/Ge
(001) 5.43 0.84 0.93 0.54 0.63
5.52 0.61 Q.67 0.53 0.60
5.65 0.31 0.36 0.51 0.56
(111) 5.43 0.85 0.86 0.58 0.59
5.65 0.37 0.35 0.56 0.54
(110) 5.43 0.76 0.85 0.52 0.61
5.65 0.22 0.26 0.50 0.54
GaAs/Si
(110) 5.43 - 0.14 -0.30 0.12 — 0.04
5.65 0.40 0.32 0.14 0.06
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TasLE 1. Heterojunction band lineups for lattice-matched (110) interfaces, obtained by self-consistent interface calculations (S.C.1.C.), and by the model
solid approach. Other theoretical and experimental results are listed for comparison.

WAE‘ (eV)

Model Empirical Harrison Tersoff

Heterojunction S.Cl1.C? solid pseudopotential® theory* theory* Experiment
AlAs/Ge 1.05 1.19 0.45 0.87 0.95°
GaAs/Ge 0.63 0.59 0.35 0.41 0.32 0.56"
AlAs/GaAs 0.37 0.60 0.25 0.04 0.55 0.45-0.56¢
GaP/Si 0.61 0.45 0.50 0.45 0.80"
InAs/GaSb 0.38 0.58 0.52 0.43 0.5t
ZnSe/GaAs 1.59 1.48 20+03 1.05 1.20 1.100
ZnSe/Ge 2.17 2.07 20403 1.46 1.52 1.52

"Reference 23.
& Reference 1.

h Reference 24.
'Reference 25.
JReference 26.

* Reference 11; the numerical uncertainty is on the order of 0.05 eV.
" Reference 7.

“ Reference 3.

9 Reference 4.

 Reference 22.

this value has been challenged and new results now seem to
indicate that more than 35% of the discontinuity is in the
valence band.! Our model solid result is very close to the
present experimental value; closer, indeed, than the self-con-
sistent calculation.

For lattice-matched systems, the model solid approach
will yield the same value for the band alignment, irrespective
of the interface orientation. For GaAs/AlAs, this corre-
sponds to what we found from the self-consistent interface
calculations: (100), (110), and (111) interfaces gave the
same band lineups (to within 0.02 eV''); this was also con-
cluded from experiment.'® Table II only contains results for
the (110) orientation. For interfaces between a group 1V
element and a III-V or II-VI compound, or between com-
pounds which do not have any elements in common, the
(110) orientation is the only one which avoids charge accu-
mulation without the need for mixing at the interface.” It
has been shown®® that for polar interfaces different types of
mixing can lead to different dipoles at the interface, which
significantly alter the band lineups. This effect can not be
described by the present model solid approach, in which the
neutral spheres cannot generate any net dipole across the
interface, and it is clearly beyond the scope of any theory*™*
which assumes the dipole to be fixed by consideration of the
bulk alone.

We conclude by comparing our approach with previous
theoretical work. Frensley and Kroemer® proposed a lineup
scheme in which they chose the mean interstitial potential in
the diamond or zinc blende structure as the electrostatic ref-
erence potential for each solid. These potentials were then
lined up, taking a dipole shift into account, which was ex-
pressed in terms of electronegativity differences. It turned
out that these dipole shifts were quite small in most cases,
indicating that the “intrinsic™ lineups were close to the true
result. We came to the same conclusion in the present work,
using a better justified value for the intrinsic potential. Al-
though our approach has in common with Harrison’s the-
ory” that a reference energy level for each material is derived
from atomic information, a key difference should be empha-
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sized. Whereas Harrison assumed that the term values carry
over from atom to solid, in our case all electronic energy
levels are shifted by the superposition of atomic potentials.
This choice to define the average potential of the model solid
is better justified by self-consistent calculations and seems to
be in better agreement with experiment. The model solid
results also show agreement with the values from Tersoff’s
theory,* which is based upon quite different ideas about
screening of quantum dipoles. Tersoff’s arguments would
clearly apply in extreme cases where metallic screening
dominates (as in the obvious case of a junction between two
metals, where our model solid approach would not be valid
at all); but it is not certain to what extent they are valid for
the semiconductor systems which we are studying here.?!
We think that the fact that our model solid results are so
close to the results from full self-consistent calculations and
to experimental values is remarkable and significant. To
bring the values into complete agreement, extra dipole terms
may need to be taken into account; however, these will
amount to small corrections, and at this point we believe
there is no simple universal theory that describes the exact
screening mechanism.
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