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The direct lattice
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We have so far considered the unit cell with the origin at some corner and the sides described
by a, b and ¢. However, we also recognize that three edges of the unit cell starting from the origin
describe the direct lattice vectors d, b and & Then some point P(u, v, w) within the unit cell where
(u,v,w) could have fractional coordinates, meaning:

{u,v,w} € {[0,1],10,1],[0,1]}

To obtain the position of P in real coordinates, we then have
P = ud + vb + wé

The reciprocal lattice
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Consider in 2D, the two vectors @ and b describing a lattice. The Miller plane (or line) (2,0) is
indicated as a cyan line. Remember that by definition, the (2,0) line intercepts the a axis at a/2



and the b axis at /0 = co. Now define a perpendicular vector J’;O to the Miller line (2,0) whose
length is given by:

K

Bl =
Bl = -

Where dy is the perpendicular distance between parallel (2,0) lines and K is some constant. The
reason why the modulus of the vector is inversely proportional to the d spacing arises from the
way the Miller indices are defined as the inverse of the intercepts. The vector J;O has the units of
inverse length and is an example of a vector in the reciprocal lattice.

It is easy to see that if we defined a set of three reciprocal lattice vectors a*, b* and & in 3D,

such that:
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Then any vector in the reciprocal lattice can be described:
diy = ha* + kb* + 1c*

This vector is parallel to the family of (hkl) Miller planes.
This description should be compared with:

P = ud@ + vb + wé

Therefore, in the reciprocal lattice, the Miller indices serve as components of the corresponding

vector.

Some important relations concerning the reciprocal lattice
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a-d=b"-b=c"-c=1

The first relation suggests that @* is normal to the plane (b, c), b* is normal to (a,c) and ¢* is
normal to (a,b). The modulus and sense of the reciprocal lattice vectors are fixed by the second
relation. The relations suggest that we could write:

@ =p(bx@); b =p(@xad); ¢ =p(dxb)
Where p is a constant. The value of p is given by taking the dot product of both sides of

@ = p(b x &)



by @, so that
s
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But the scalar triple product is just the volume V'
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This tells us that p = 1/V and
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The reciprocal unit cell will have as coordinates at the corners, the sets of Miller planes which
are perpendicular to the reciprocal lattice vectors. For a cubic cell, the reciprocal cell:
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Distances

Since the length of the vector JZkl is inversely related to the perpendicular distance between neigh-
boring hkl planes,
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For orthorhombic crystals, a* - b* =0 etc. and @ - @* = 1/a? ete. This gives:
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Angles
The angles between normals to the planes described by (h1k1l1) and (hokal2) is described by:
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The Ewald construction
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We draw a sphere of radius 1/\ around the crystal at A. If the incident x-ray beam is diffracted
through the point B (the Bragg condition is satisfied for some hkl plane) then we consider the
reciprocal lattice vector dj,;, starting at the origin O, and extending to B. iBy trigonometry, we
have:

OB/2 = (1/\)sinf = (1/2)|d} | = 1/(2dpi)
or
A= 2dhkl sin 0

Therefore the Bragg condition is fulfilled if one of the reciprocal lattice points falls on the Ewald
sphere.



