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The direct lattice
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We have so far considered the unit cell with the origin at some corner and the sides described
by a, b and c. However, we also recognize that three edges of the unit cell starting from the origin
describe the direct lattice vectors ~a, ~b and ~c. Then some point P (u, v, w) within the unit cell where
(u, v, w) could have fractional coordinates, meaning:

{u, v, w} ∈ {[0, 1], [0, 1], [0, 1]}

To obtain the position of P in real coordinates, we then have

P = u~a + v~b + w~c

The reciprocal lattice
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Consider in 2D, the two vectors ~a and ~b describing a lattice. The Miller plane (or line) (2,0) is
indicated as a cyan line. Remember that by definition, the (2,0) line intercepts the a axis at a/2
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and the b axis at b/0 = ∞. Now define a perpendicular vector ~d∗20 to the Miller line (2,0) whose
length is given by:

|~d∗20| =
K

d20

Where d20 is the perpendicular distance between parallel (2,0) lines and K is some constant. The
reason why the modulus of the vector is inversely proportional to the d spacing arises from the
way the Miller indices are defined as the inverse of the intercepts. The vector ~d∗20 has the units of
inverse length and is an example of a vector in the reciprocal lattice.

It is easy to see that if we defined a set of three reciprocal lattice vectors ~a∗, ~b∗ and ~c∗ in 3D,
such that:

~a∗ = ~d∗100 and |~a∗| = 1
d100

~b∗ = ~d∗010 and |~b∗| = 1
d010

~c∗ = ~d∗001 and |~c∗| = 1
d001

Then any vector in the reciprocal lattice can be described:

~d∗hkl = h~a∗ + k~b∗ + l~c∗

This vector is parallel to the family of (hkl) Miller planes.
This description should be compared with:

P = u~a + v~b + w~c

Therefore, in the reciprocal lattice, the Miller indices serve as components of the corresponding
vector.

Some important relations concerning the reciprocal lattice

~a∗ ·~b = ~a∗ · ~c = ~b∗ · ~a = ~b∗ · ~c = ~c∗ · ~a = ~c∗ ·~b = 0

and

~a∗ · ~a = ~b∗ ·~b = ~c∗ · ~c = 1

The first relation suggests that ~a∗ is normal to the plane (b, c), ~b∗ is normal to (a, c) and ~c∗ is
normal to (a, b). The modulus and sense of the reciprocal lattice vectors are fixed by the second
relation. The relations suggest that we could write:

~a∗ = p(~b× ~c); ~b∗ = p(~c× ~a); ~c∗ = p(~a×~b)

Where p is a constant. The value of p is given by taking the dot product of both sides of

~a∗ = p(~b× ~c)
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by ~a, so that

~a∗ · ~a = 1 = p(~b× ~c · ~a)

But the scalar triple product is just the volume V

V = ~b× ~c · ~a

This tells us that p = 1/V and

~a∗ = (~b× ~c)/V ; ~b∗ = (~c× ~a)/V ; ~c∗ = (~a×~b)/V

The reciprocal unit cell will have as coordinates at the corners, the sets of Miller planes which
are perpendicular to the reciprocal lattice vectors. For a cubic cell, the reciprocal cell:
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Distances

Since the length of the vector ~d∗hkl is inversely related to the perpendicular distance between neigh-
boring hkl planes,

~d∗hkl · ~d∗hkl =
1

d2
hkl

= (h~a∗ + k~b∗ + l~c∗) · (h~a∗ + k~b∗ + l~c∗)

For orthorhombic crystals, ~a∗ ·~b∗ = 0 etc. and ~a∗ · ~a∗ = 1/a2 etc. This gives:
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Angles

The angles between normals to the planes described by (h1k1l1) and (h2k2l2) is described by:

cos ρ =
~d∗h1k1l1

· ~d∗h2k2l2

|~d∗h1k1l1
||~d∗h2k2l2

|
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The Ewald construction
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We draw a sphere of radius 1/λ around the crystal at A. If the incident x-ray beam is diffracted
through the point B (the Bragg condition is satisfied for some hkl plane) then we consider the
reciprocal lattice vector ~d∗hkl, starting at the origin O, and extending to B. iBy trigonometry, we
have:

OB/2 = (1/λ) sin θ = (1/2)|~d∗hkl| = 1/(2dhkl)

or

λ = 2dhkl sin θ

Therefore the Bragg condition is fulfilled if one of the reciprocal lattice points falls on the Ewald
sphere.
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