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Optical diffraction

Fresnel diffraction
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In the Fresnel diffraction experiment, wavetrains from a single point source arrive at two or
more slits, through which they pass. The slits act as a secondary light source. As they emerge
from the slits, they interfere constructively and destructively, forming dark and light bands.

Fraunhofer diffraction

BA
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In Fraunhofer diffraction, a set or parallel rays pass through a number of slits. Constructive
and destructive interference occurs as bands on the right hand side. The condition for constructive
interference is that the path difference AB, between adjacent slits, should be an integral multiple
of the number of wavelengths. If the separation between slits is a, the path difference is:

AB = nλ = a sinα

If the image is taken at some far-away location, then α is small and sinα ∼ α and

α ∼ nλ

a

a reciprocal relationship between the diffraction angle and the (slit) lattice spacings a.
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Fourier transforms

The Fourier transform of the function f(x) is defined:

F (k) =
∫ ∞

−∞
f(x)e−2πikxdk

and it’s inverse is defined:

f(x) =
∫ ∞

−∞
F (k)e2πikxdx

For even functions f(x) = f(−x) and only the cosine part of the exponent is retained:

F (k) = 2
∫ ∞

0
f(x) cos 2πkxdk

Since the argument of the exponent or the cosine must be dimensionless, the units of k and
x are inverses of one-another. So x in Å means k has the units of Å−1 which is the units of
wavenumber. This is a clue that the Fourier transforms of distances (spacings) should be functions
of wavelnumbers.

A particularly useful Fourier transform is that of the cosine:

f(x) F (k)

cos(2πk0x) 1
2 [δ(k − k0) + δ(k + k0)]

A periodic function with wavelength (k0) is transformed to a single spike, corresponding to
that wavelength. Lattices are periodic so one expects that their Fourier transforms will possess
information about all the spacings in the lattice.

What is the connection between the scattered/diffracted radiation and the Fourier Transform ?
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Consider a “pencil” of radiation being scattered from some point p in an object (black arrows).
Let the incident vector be ~k and the scattered vector be ~k′. Now consider the path difference of the
scatterer ed vector, with the same pencil of radiation passing through the origin in the object. This
is represented by the green arrows. The vector ~r (red) allows the path difference to be calculated
as:

r cos θ + r cos φ = ~r · ~̂k +−~r · ~̂k′

So the path difference is
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~r · (~̂k − ~̂k′)

Now since the phase difference is the path difference times 2π/λ, we have the phase difference:

~r · (~̂k − ~̂k′)× 2π/λ

Let ~q = λ(~̂k − ~̂k′). Then the phase difference is 2π~r · ~q. The corresponding wave is then
exp(2πi~r · ~q). Now if we integrate over all points in the object, and f(~r) represents the amplitude
of the scattering at the point described by ~r, then the total scattering is

F (~q) =
∫ ∞

−∞
f(~r)e(2πi~r·~q)d~r

Which is nothing but the Fourier transform

The generation of X-rays

Electrons from a glowing filament (usually tungsten or rhenium) are accelerated by applying a
DC field (typically of about 30-40 kV). These accelerated electrons are then bombarded against a
cooled metal target (Fe, Cu, Mo . . . ). The electrons slow down when they enter the metal, so they
loose energy. This lost energy is emitted as a continuous radiation called brehmsstrahlung radiation,
usually in the X-ray region of the electromagnetic spectrum (with energies of the order of kV). In
addition to the broad brehmsstrahlung radiation, there are the so-called characteristic X-ray peaks
associated with electronic transitions in the target material. These characteristic X-radiations have
a much larger intensity than does the brehmsstrahlung . The energies of the characteristic radiation
depends on which atomic shell of the target material is being excited by the incident electrons (K,
L etc), as well as the atomic number of the target. The energy of the characteristic radiation is
proportional to the atomic number raised to the fourth power.

In lab X-ray diffraction experiments, characteristic radiation from the K shell of Cu (with a
wavelength around 1.5 Å) or from the K shell of Mo (with a wavelength around 0.7 Å) is typically
used.

When charged particles are accelerated, they release energy continuously. In a synchrotron
source, electrons are typically accelerated around a storage ring through the use of magnetic fields.
The accelerated electrons emit X-rays when they are sufficiently energized. This X-radiation covers
a broad spectrum of wavelengths and is very useful for a number of scattering experiments for
which lab X-rays are not suited.

The Laue experiment

In the Laue experiment, the crystal is viewed as a 3D diffraction grating. Vector analysis can be
used to determine the path difference in the scattered radiation induced by the crystal lattice. The
analysis is similar to our demonstration that the scattering corresponds to a Fourier transform. See
the handout.
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The Bragg experiment and Bragg’s law

Bragg simplified the Laue picture by saying that planes (constituted of atoms) can be assumed
to act like mirrors and that the X-rays undergo specular reflection by these mirrors. The path
difference between the reflected rays from adjacent mirrors gives rise to constructive and destructive
interference. See the handout.
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