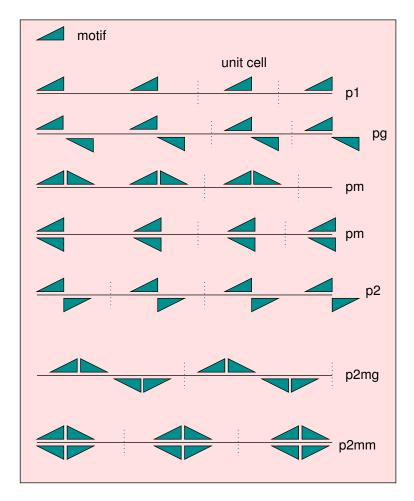
Materials 218/UCSB: Class IV Crystallography in a nutshell: Lattices, unit cells, symmetry — how crystallography simplifies the depiction of structures

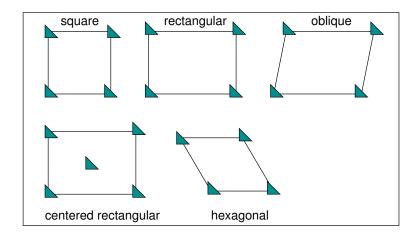
Ram Seshadri (seshadri@mrl.ucsb.edu)

Most of the materials we deal with in this course are crystalline, meaning that they are periodic at the atomic scale. The *unit cell* is repeated (tiled) many billions of times in every direction in order to obtain crystal.

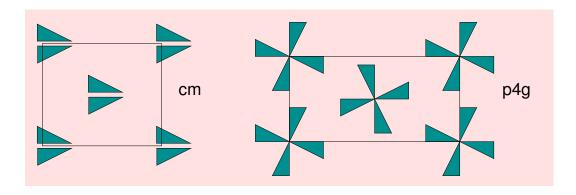
The unit cell:


Tiled in the three directions:

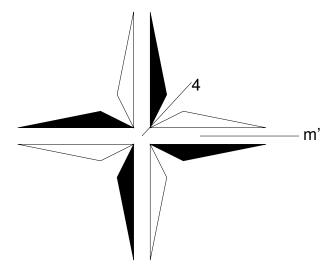
Crystallography is the science that helps understand and perhaps even rationalize the atomic-scale structure of crystalline materials. This class is a quick review. For a quick and comprehensible treatment of the subject, see C. Hammond, *The basics of crystallography and diffraction* (IUCr-Oxford). This is more than sufficient for the purpose of this course. For a more advanced treatment, see the edited book by C. Giacovazzo, *An introduction to crystallography* (IUCr-Oxford).


- The crystal is built up by tiling the unit cell
- The contents of the unit cell are atoms and molecules
- ullet The use of $symmetry\ elements$ simplifies the description of the contents of the unit cell

- In 1 D, there are 7 line groups the crystallography of frieze patterns. **Frieze:** n A band of painted or sculptured decoration. More interestingly, that member in the entablature of an order which comes between the architrave and cornice. Also in extended sense.
- These line groups possess three different kinds of symmetry elements, the mirrors m, the two-fold rotations 2, and the glides g. They act on the *motif* to copy it within the unit cell.


The doted vertical lines mark the outlines of the unit cells.

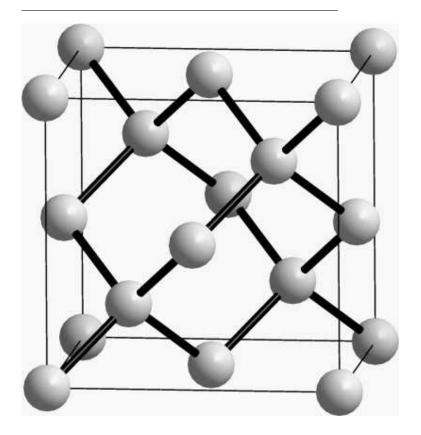
- In going from 1D to 2D (where there are now seventeen plane groups) only one new concept is added that of *centering*.
- There are 5 kinds of cells in 2D the plane lattices:



• There are 17 plane groups, obtained by combining all the possible symmetry operations in 2D. The operations are: 2, 3 and 4-fold rotations, mirrors m, glides g, centering c.

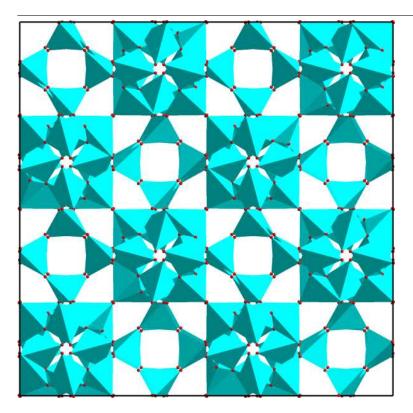
Examples of plane groups:

• Sometimes, it is useful to add another element of symmetry. For example, two-color symmetry (indicated by a prime) switches black to white and *vice-versa*. These are called Shubnikov groups.



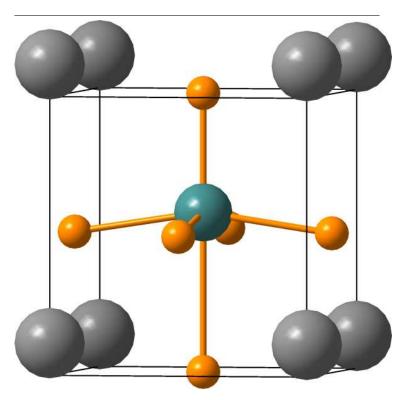
Shubnikov groups are useful when properties such as spin need to be overlaid over the normal crystal-lographic symmetry.

- What about 3D?
 - "We shall have mercifully little to say about the 230 space groups ..." N. W. Ashcroft and N. D. Mermin, Solid State Physics.
- There are 14 lattices in 3D the Bravais lattices
- The only new elements of symmetry on going from 2D to 3D are the *screw axes*. See the handout for an illustration of what these are.
- Crystallography simplifies the description of crystal structures
 - The diamond structure: Cubic close-packing of C atoms, with C occupying some of the tetrahedral interstices.


Space Group $Fd\bar{3}m$ (227); a = 3.56 Å.

Atom	Wyckoff letter	Site symmetry	x	y	z
C	8a	$\overline{4}3m$	0	0	0

– Faujasite: The zeolitic Si-O framework of this material is described by five atoms. Space Group $Fd\overline{3}m$ (227); a=24.56 Å.


Atom	Wyckoff letter	Site symmetry	x	y	z
G:	100:	1	0.0064	0.1050	0.0000
Si	192i	1	0.0364	0.1272	0.3029
O1	192i	1	0	0.3864	0.6136
O2	96g	m	0.0012	0.0012	0.1447
O_3	96g	\mathbf{m}	0.0684	0.0684	0.3126
O4	96g	\mathbf{m}	0.3257	0.3257	0.0288

The Si-O framework of the zeolite Faujasite. The tetrahedra have Si at the center. Approximately 640 atom positions are required to make this drawing.

– Tetragonal, ferroelectric PbTiO $_3$ at room temperature: Space Group P4mm (99); a=3.904 Å c=4.152 Å.

Atom	Wyckoff letter	Site symmetry	x	y	z
Ph	1	4-00-00	0	0	0.116
гь Ti	1a $1b$	4mm	1/9	1 /0	0.116
		4mm	'-	,	0.572
01	$\frac{2c}{1}$	2mm	1/0	1/2	1/2
O2	1b	$4\mathrm{mm}$	1/2	1/2	U

