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Background:

• Intrinsic stability of thermodynamic systems (after H. B. Callen, Thermodynamics and an introduction
to thermostatistics, 2nd Edn.):

The entropy function S for a thermodynamic one-component system is:

S = S(U, V )

where U is the internal energy and V is the volume. By definition dS = 0 and d2S < 0 describe
equilibrium conditions. The first condition is that the entropy is at an extremum, and the second
condition specifies that the extremum is a maximum.

If N is fixed, S = S(U, V ) and one can show by perturbing U and V slightly (both separately and
together) that for the system to be stable, three conditions can be obtained:(
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• Some of these conditions translate into more familiar ones. For example, suitable manipulation suggests
that: (
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Which tell us, since T must always be positive, that CV must always be positive for a system to be
stable. In other words, when heat is provided to a system at constant volume, its temperature must
increase.

Along the same lines, the isothermal compressibility
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If at constant T , pressure is applied on a system, the volume of the system must decrease.

There can exist regions in phase diagrams of 1-component system where the system might try and vio-
late these stability conditions. Near these regions, phase transitions occur that prevent such violation.
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Consider isotherms of the van der Waals equation of state. In the lowest sub-critical trace shown
above, there are regions which are clearly unstable as they correspond to regions with κT < 0. At
these points, one can expect phase transitions.

• A study of phase transitions (or transformations) is particularly important in the solid state, since
in many solid materials, properties (electrical, magnetic, mechanical . . . ) are inalienably inked with
phase transitions that the material might have undergone, or might undergo.

Phase transitions and crystals (after Megaw):

– Reconstructive: There is complete fragmentation of the crystal associated with there being no
orientational relationship between the parent and daughter phase:

An example is the phase transition from the perovskite lattice (left above) to the hexagonal
tungsten bronze structure (right above). The A atoms in the structure are not shown.

– Close orientational relationships; interchange of atoms, randomly, by diffusion: Substitutional
order-disorder:
This is the kind of relationship seen on going from the Fm3m alloy Cu0.75Au0.25 with the Cu
structure to the perovskite-like intermetallic Pm3m Cu3Au. In the alloy, the fcc lattice sites are
randomly occupied by (on average) Cu0.75Au0.25.

– No close orientational relationships, with large changes of shape; no diffusion: Martensitic:
This is the kind of phase transition that one has on going from the CsCl structure to the NaCl
structure (happens to KI upon heating)
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– Close orientational relationships: Pure displacive:
Obtained by mild shearing of structures. No bond-breaking or making. An example is going from
a cubic perovskite to an orthorhombic perovskite:

– Close orientational relationships: Order-disorder by H hopping.

– Close orientational relationships: Orientational switching, ordering (eg C60).

– Intra-atomic order disorder: Cooperative Jahn-Teller distortions, Verwey transitions.

The free energy across phase transitions and Landau theory:

Please see the handout.

BaTiO3:

BaTiO3 is one of the most widely used ferroelectric materials, and has been investigated in detail since
its first preparation in the early 1940’s. Above 393 K, it is cubic, and has the ideal perovskite structure.
It is paraelectric, meaning that electric polarization (the number of electric dipoles per unit volume)
increase linearly with the applied electric field.

The tolerance factor of BaTiO3 defined:

t =
(rBa + rO)√
2(rTi + rO)

is greater than 1 (it is 1.07) which means that Ba2+ is too large to fit into the space created by eight
TiO6 octahedra at the corners of the perovskite cube. In addition, Ti4+ has the d0 configuration. This
is a configuration prone to go off-center which is good for ferroelectricity.

Please see the handout for more on BaTiO3.
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