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• In traditional solid state physics treatments (Kittel), one is told that band gaps arise due to transla-
tional periodicity, that there is Bragg reflection of free electrons at the edges of the Brillouin zone and
this open up gaps. In 1D, the free electron wavefunction is:

ψk(x) = exp(ik · x)

These are plane wave solutions to the free electron Schrödinger equation. The energy and momentum
are given by:

εk =
~2

2m
k2; p = ~k

Instead of a free electron in 1D, consider a 1D lattice with lattice constant a. The Bragg condition
for diffraction by waves of wavevector k is (k +G)2 = k2 where G is the reciprocal lattice vector, and
G = 2πn/a for the 1D lattice where n is some integer. Therefore, the Bragg condition solves to

k = ±1
2
G = ±nπ/a

The first reflections and therefore, the first energy gaps occur at k = ±π/a.
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On the left is a sketch of the free electron wave function and on the right is a sketch of the effect
of imposing a lattice on the free electron wave function with lattice parameter a.1 At the k points
k = ±π/a, an energy gap ∆ opens up.

The second allowed band starts after the first one gives up. The second band is in the second Brillouin
zone.

• Such a description is limited in its applicability. What about a defect, a surface or an amorphous
material that would not have translational periodicity, and therefore would not have Bragg reflection
of electrons ? We know that such materials do have band gaps (window glass !) The solution is to
look at real-space pictures and return to tight-binding models.

1This is referred to as the nearly free electron model. Note its resemblance to the kinds of dispersion relations we derived
for s orbital bands.
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• For the real space description, consider two energy levels, on two different orbitals A and B. When the
orbitals are far apart, the energy levels are at the atomic limit. When they approach, bonding and
antibonding combinations form, splitting the two levels. The bonding energy level is the bottom of
that particular DOS, and the antibonding level, the top.
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Notice how the levels broaden. Somewhere in-between, there is some dispersion of the individual states,
but there is still a gap. When the atoms approach very close, the gap vanishes.

Such a picture is physically quite realistic. Many semiconductors (which have a gap) become metallic
on being subject to hydrostatic pressure.

• When states in a crystal are filled up, the rules are the same as what is required for filling up atomic
orbital states. Start with the lowest energies, and pay heed to Pauli’s exclusion principle. The exclusion
principle says that no band can have more than two electrons.

EF

metalsemi−metalinsulator

Electrons in filled bands do not carry a current because they cannot move without violating Pauli’s
exclusion principle. If they do move, their motion must be compensated by the motion of a hole in the
same direction, or of an electron in the opposite direction.
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• The Peierls distortion:

1D Lattices with 1/2-filled (and indeed, 1/n filled bands) susceptible to distort in a special way that
permits opening of a gap at the Fermi energy. This is called the Peierls distortion. Polyacetylene is a
typical 1D system that undergoes such a distortion, as first suggested by Salem and Longuet-Higgins.

The simple, tight-binding picture of such a gap opening up can be obtained by considering crystal
orbitals formed from a 1D lattice of s orbitals. At the center of the band, the number of bonds equals
the number of antibonds. Two kinds of crystal orbitals can be envisioned, which are degenerate in
energy:

If the lattice is alternately contracted and expanded as shown using the blue and red arrows, the cell
parameter becomes 2a instead of a. This means that the X point is now at k = π/2a. The doubling
of the cell in real space corresponds to halving in k space. Also the bands are no longer disperse. The
scheme below is the opening of a gap as a result:

fold back halve distort

The dotted line is the Fermi energy. The Peierls distortion is an example of symmetry-breaking lifting
a degeneracy. The Jahn-Teller distortion in d orbital solids is another such example.

• We shall now sketch out the schematic DOS of TiO, TiO2, MoO2, MoS2, PbO, PbO2, SrTiO3, GaN,
and LaCoO3 and LaNiO3.
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• Screening in metals.

In a good metal, the density of electrons is very high – of the order of 1022 cm−3. These electrons
should repel strongly. We recollect that hard spheres crystallize, and that repulsive interactions are
sufficient for this. It is therefore surprising that electrons do not crystallize in metals. If they did
crystallize, they would stop moving and the metal would no longer conduct.

The answer to this is that paradoxically, when the concentration of electrons is high, the electrons
form a sea of negative charge that actually prevent one electron from seeing another. The formula for
such screening in a crystal is the so-called Thomas-Fermi formula for the screened Coulomb potential
(Kittel):2

ϕ(r) =
q

r
exp(−ksr)

where q is the charge and r is the distance. The wavevector ks defines the screening length 1/ks. ks is
a function of the DOS at the Fermi energy:

k2
s = 4πe2D(EF)

where e is the charge on an electron. When the density of states at the Fermi energy D(EF) is large
(as in a metal), ks is large and the screening length is small. A small screening length means that
electrons have to come very close before they start seeing each others’ potential.

• Breakdown of Band theory: Mott insulators:

Sometimes, we find that systems which should be metallic from considerations of the electron count
are in reality, insulating. In such systems, the screening is not effective and electrons start repelling
one another. In the simplest model, as atoms move away from one another, the bands become narrow
and this weakens screening.

Examples where such phenomena are observed are dilute solutions of metals in liquid ammonia, the
oxide NiO, lightly doped semiconductors etc. Please see the handout.

2Note the similarity with the repulsive part of the DLVO potential for colloids.
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