Materials 218/UCSB: Assignment V

Ram Seshadri (seshadri@mrl.ucsb.edu)

Due date: February 27th 2003 (EXTRA TIME)

- 1. In class, we examined the band structure of a square lattice of s orbitals. Sketch out the band structure of a rectangular lattice of s orbitals with a and b as the lattice parameters and a < b. Remember that $X(0, \frac{\pi}{a})$ and $Y(\frac{\pi}{b}, 0)$ will not be degenerate. Sketch the DOS alongside.
- 2. Sketch the band structure of square lattice of p_x and p_y orbitals, with the DOS alongside.
- 3. The Physics of High- T_C superconductors:

The essential electronic structural features of High- T_C copper oxide superconductors are summarized in the sketch below, with perovskite CuO₂ planes represented by a chessboard. The black tiles on the chessboard have a copper atom with a $d_{x^2-y^2}$ orbital at the center. At the corner of every tile is an oxygen atom with a p_x and a p_y orbital.

Sketch out the band structure of such a 2D lattice, concentrating on the band formed through the metal-oxygenmetal network (nearest neighbors). Suggest why similar compounds formed from *early* transition metals such as Ti or V would not have bands that are as disperse.¹.

Compare your band structure with a DFT calculation on La_2CuO_4 , the parent compound of all High- T_C superconductors. Focus on the striped band. The 0 on the energy axis is the Fermi energy:

¹Think of the filling of electrons into d orbitals in a square-planar crystal field. Highly disperse bands are considered to be very important for High- T_C

4. The Cyrot-Lackmann theorem:

Sometimes, it is convenient to be able to guess the form of the density of states at some *local* site in a structure. Françoise Cyrot-Lackmann [J. Phys. Chem. Solids **29** (1968) 1235] has suggested a theorem (the Moments Theorem) that allows one to do this.

The theorem states:

The n^{th} moment of the local density of states on an atom *i* is the sum of all paths of length *n* hops starting and ending on site *i*.

The n^{th} moment $\mu_i^{(n)}$ of the local DOS at site *i* is defined:

$$\mu_i^{(n)} = \int_{\text{whole band}} (E - \alpha)^n D_i(E) \, \mathrm{d}E$$

where α is the center of gravity of the local DOS, and $D_i(E)$ is the local DOS at site *i*.

As for any normalized distribution, the zeroth moment is 1 (the area under the DOS curve), the first moment is the mean or the center of gravity α , the second moment is the width (like the standard deviation) of the DOS, and the higher moments describe the shape (skewness, kurtosis *etc.*).

How are the hops calculated ? This is illustrated for the graphite lattice for the atom at site i:

The pink arrows indicate hops of length 2. There are three such hops possible.² Each of these hops contributes β^2 to $\mu^{(2)}$. β is the strength of the interaction between ions, and is related to covalency (more covalent \Rightarrow larger β). There are no hops of length 3, so $\mu^{(3)} = 0.^3$

The blue arrows indicate hops of length 4. Each of these contributes β^4 to $\mu^{(4)}$ and there are 6 such hops. In addition, one can hop from site *i* to a neighbor and back *twice*. This provides an additional $3 \times \beta^4$ (since there are three neighbors).

So we have:

$$\mu^{(0)} = 1; \ \mu^{(1)} = \alpha; \ \mu^{(2)} = 3\beta^2; \ \mu^{(3)} = 0; \ \mu^{(4)} = 9\beta^4$$

It is known that for the moments of a distribution, the dimensionless quantity s given by:

$$s = \frac{\mu^{(4)}\mu^{(2)} - (\mu^{(2)})^3 - (\mu^{(3)})^2}{(\mu^{(2)})^3}$$

is indicative of whether the distribution is unimodal $(s \ge 1)$ or bimodal (s < 1).

- (a) Calculate s for the site i in the graphite lattice and use this to describe the nature of the local DOS at site i.
- (b) Calculate s for an atom in the middle of a 1D chain and for an atom at the end of the chain. Are the DOS unimodal or bimodal at these sites ?
- 5. Effects of dimensionality:
 - (a) Show from considerations of $\mu^{(2)}$ that on going from 2D to 3D, (a square lattice to a simple cubic lattice) the DOS broaden significantly ($\mu^{(2)}$ is larger).
 - (b) Is the DOS skewed or symmetric in the above two cases ?

 $^{^{2}}$ One can only hop along a bond.

 $^{{}^{3}\}mu^{(3)} = 0$ means the DOS is symmetric about its center of gravity. In other words, it is not skewed. $\mu^{(3)} < 0$ means the distribution is skewed towards higher energies with a long tail at lower energies. $\mu^{(3)} > 0$ means the opposite.