Ram Seshadri MRL 2031, x6129

 $seshadri@mrl.ucsb.edu; http://www.mrl.ucsb.edu/\simseshadri/teach.html$

This class closely follows the third chapter of Callister

Radius ratio recap

The *Radius ratio* rule states that a coordination polyhedron is formed around each cation. The distance between the cation and the anion is the sum of the ionic radii $(r_A + r_C)$. The number (coordination number CN) of anions around the cation is determined by the radius ratio r_A/r_C . Also see the in-class handout.

The crystal systems

See the in-class handout.

Some hexagonal structures

hcp – **the structure of Mg** The cell parameters are a = 3.20 Åand c = 5.20 Å.

The cell comprises one Mg atoms at (2/3, 1/3, 1/4) and the other at (1/3, 2/3, 3/4).

Graphite The cell is a = 2.4612 Å and c = 6.7090 Å. The atoms are at (0,0,1/4), (0,0,3/4), (1/3,2/3,3/4) and (2/3,1/3,1/4).

Atom	x	y	z	
Zn	2/3	1/3	0	-
Zn	1/3	2/3	1/2	
\mathbf{S}	2/3	1/3	$\sim 3/8$	
S	1/3	2/3	$\sim 7/8$	
		2		z~3/8
				z~7/8

Wurtzite, the other ZnS structure a = 3.81 Å = 6.23 Å

More complex cubic structures

This structure type is also adopted by SrF₂, BaF₂, UO₂, ThO₂, Na₂O (the anti-type), ZrO₂ at high temperatures ...

 ZrO_2 can be stabilized in the fluorite structure through doping with Ca^{2+} or Y^{3+} – these are *stabilized* zirconias and have many structural and electrochemical applications.

Miller indices

See the in-class handout.