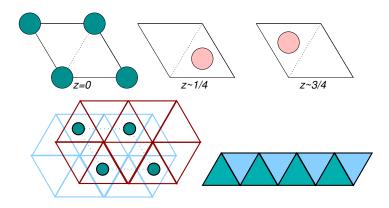

More crystals structures:

Ram Seshadri (seshadri@mrl.ucsb.edu)

AB₂ structures:

Fluorite CaF₂: SG = $Fm\overline{3}m$ (No. 225) a = 5.45 Å

Atom	\boldsymbol{x}	y	z	
Ca	0	0	0	
\mathbf{F}	1/4	1/4	1/4	

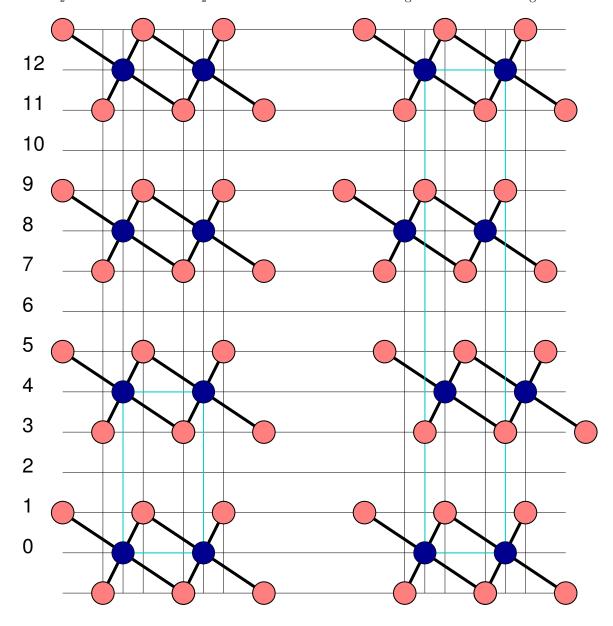


This structure type is also adopted by SrF_2 , BaF_2 , UO_2 , ThO_2 , Na_2O (the anti-type), ZrO_2 at high temperatures . . .

 ${\rm ZrO_2}$ can be stabilized in the fluorite structure through doping with ${\rm Ca^{2+}}$ or ${\rm Y^{3+}}$ – these are *stabilized* zirconias and have many structural and electrochemical applications.

CdI₂: SG = $P\overline{3}m1$ (No. 164) a = 4.24 Å c = 6.84 Å

Atom	x	y	z
$\overline{\text{Cd}}$	0	0	0
I	2/3	1/3	~ 0.25

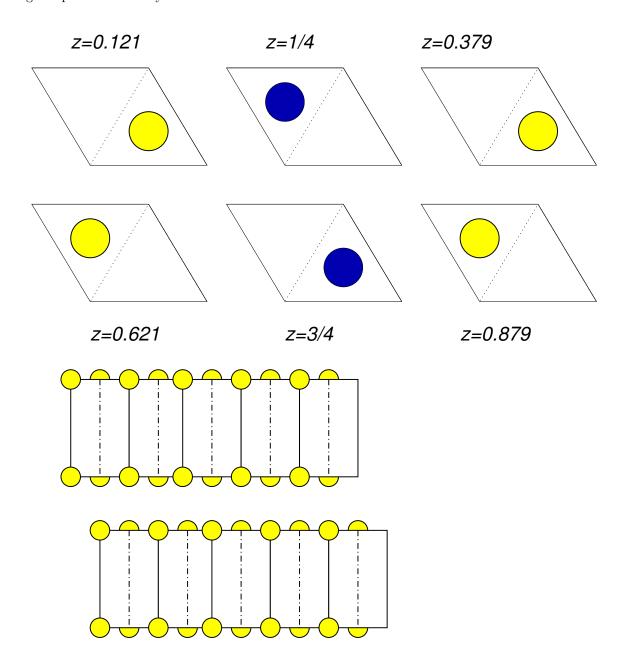


This structure type is also adopted by PbI_2 , $MgCl_2$, $FeCl_2$, ZnI_2 , $Cd(OH)_2$, $Mg(OH)_2$, TaS_2 , NbS_2 ...

CdCl₂: SG = $R\overline{3}m$ (No. 166) a = 3.85 Å c = 17.46 Å

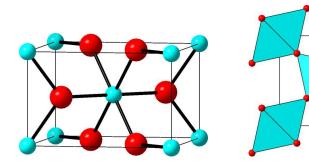
Atom	x	y	z
$\overline{\text{Cd}}$	0	0	0
Cl	2/3	1/3	$\sim 1/12$

The $CdCl_2$ structure is to the CdI_2 structure what ABCABC stacking is to ABAB stacking:



On the left is the structure of CdI_2 projected down the b axis and on the right is the structure of $CdCl_2$. The cyan-colored box marks the unit cell.

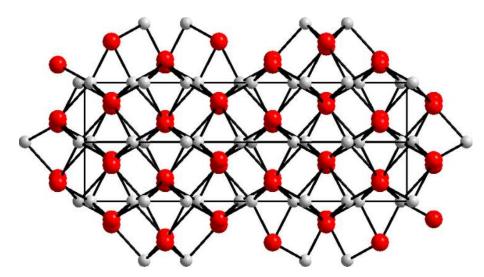
MoS₂: SG = $P6_3/mmc$ (No. 194) a = 3.160 Å c = 12.294 Å


Atom	x	y	z
Mo	1/3	2/3	1/4
S	1/3	2/3	0.621

Unlike the CdI_2 structrure where the cations are octahedral, in MoS_2 , the cations are in the centers of trigonal prisms formed by the S.

Rutile TiO₂: SG = $P4_2/mnm$ (No. 136) a=4.592 Å c=2.959 Å

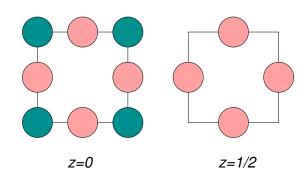
Atom	\boldsymbol{x}	y	z
Ti	0	0	0
O	0.3051	0.3051	0



Left: The rutile structure showing the TiO₆ octahedron within a single unit cell.

Right: The rutile structure showing many TiO_6 octahedra sharing corners. The view is down the c axis. This is also the structure of CrO_2 , MoO_2 , RuO_2 ...

 Al_2O_3 : SG = $R\overline{3}c$ (No. 167) a = 4.759 Å c = 12.992 Å


Atom	x	y	z
Al	0	0	0.35217
O	0.30168	0	1/4

The corundum structure with the c axis going from left to right. Red spheres are O and grey are Al.

 $\mathbf{ReO_3}$: SG = $Pm\overline{3}m$ (No. 221) a = 3.754 Å

Atom	\boldsymbol{x}	y	z
Re	0	0	0
O	1/2	0	0

