Nanomagnetism

Ram Seshadri

Materials Department and Materials Research Laboratory University of California, Santa Barbara CA 93106 seshadri@mrl.ucsb.edu http://www.mrl.ucsb.edu/~seshadri

Thanks:

Daniel Shoemaker

Katharine Page

Christina Schade

Dr. Ombretta Masala (Nanoco Technologies, Manchester)

UC SANTA BARBARA engineering

Outline:

- Introduction to cooperative magnetism
- Size effects in magnetism
- Magnetic oxides
- Intermetallics
- Core/shell architectures
- Spontaneously formed magnetic composites

Diamagnetism: Very weak effect possessed by *all bodies*. Characterized by materials repelling magnetic field lines.

Water is diamagnetic, and hence most living beings are as well.

Frogs (and humans) can be floated by very strong magnetic fields [work done at the European High Field Magnet Lab, Nijmegen, Netherlands]

Paramagnetism: Associated with systems having unpaired electrons. Oxygen is a good example.

Electrons in atoms:

paramagnetic

diamagnetic

Paramagnetism is characterized by a weak attraction to a magnetic field. In the image, liquid oxygen is being held by an electromagnet.

Usually, dia- and paramagnetism are not cooperative.

Ferromagnetism: Characterized by a very strong attraction to a magnetic field, and frequently by the material having a memory of being in a magnetic field.

Most materials that we refer to as "magnets" are actually *ferromagnets*, and specifically, hard ferromagnets.

Ferro comes from the phenomenon being associated with iron.

(some) materials are ferromagnetic below their Curie temperatures

Domains are collections of aligned spins (on electrons). They can be aligned (or magnetized) or misaligned (demagnetized)

Domains explain why two pieces of iron don't normally attract each other; iron is a "soft" magnet, and its domains easily demagnetize.

"Hard" magnets such as ferrite, Fe_3O_4 can be demagnetized by heating.

Soft ferromagnets: CoS_2 , $La_{0.7}Sr_{0.3}MnO_3$, $ZnFe_2O_4$ Hard feromagnets: $SmCo_5$, $CoFe_2O_4$, Nd-Fe-B, FePt

Domains also explain hysteresis, and the notion of magnetic memory: \mathbf{x}

Antiferromagnets:

Near-neighbor spins are antialigned. No hysteresis. Examples: MF_2 , MO (M = Mn, Fe, Co, Ni, Cu), IrMn ...

Ferrimagnets:

Near-neighbor spins are antialigned, and are also not compensated (the spins don't cancel). Hysteresis and magnetization like in a ferromagnet. Examples: Fe_3O_4 , $CoFe_2O_4$, $Y_3Fe_5O_{12}$, $BaFe_6O_{19}$...

Size effects

Single-domain ferrite (Fe_3O_4) nanoparticles in magnetotatic bacteria

Nature, March 2nd, 2006

UC SANTA BARBARA engineering

Preparation

Annu. Rev. Mater. Res. 2004. 34:41–81 doi: 10.1146/annurev.matsci.34.052803.090949 Copyright © 2004 by Annual Reviews. All rights reserved

Synthesis Routes for Large Volumes of Nanoparticles

Ombretta Masala and Ram Seshadri

Materials Department and Materials Research Laboratory, University of California, Santa Barbara, California 93106; email: masala@engineering.ucsb.edu, seshadri@mrl.ucsb.edu

Annu. Rev. Mater. Res. 34 (2004) 41-81: Metals, chalcogenides, main group elements, oxides, pnictides.


```
Oxide nanoparticles
```

Oxides can be prepared by

Hydrolysis:

 $2M^{3+}(H_2O)_6 \rightarrow M_2O_3 + 9H_2O + 6H^+ [eg. \gamma - Fe_2O_3]$

Metathesis:

 $TiCl_4 + Ti(OR)_4 \rightarrow 2TiO_2 + 4RCl$ [Colvin *et al. J. Am. Chem. Soc.* **121** (1999) 1613-1614.]

Thermolysis:

 $Zn(acac)_2 \rightarrow ZnO + products in refluxing dibenzylether$

Oxide nanoparticles

Example: CoFe₂O₄

Stoichiometric amounts of **Co(acac)**₂ and **Fe(acac)**₃ in benzyl ether

Oleylamine and oleic acid as capping agents

200°C and at reflux

Size control by using different amounts of capping agents and different reaction time

Oxide nanoparticles

Ghosh et al., A novel noute to toluene-soluble magnetic oxide nanoparticles: Aqueous hydrolysis followed by surfactant exchange, Chem. Mater. **16** (2004) 118-124.

Oxide nanoparticles: MnFe₂O₄

MnFe₂O₄ nanoparticles capped with oleic acid and oleyl amine prepared by decomposing Mn(acac)₂ and Fe(acac)₃ in refluxing dibenzyl ether at 300° C.

Masala and Seshadri, Chem. Phys. Lett. 402 (2005) 160. Nanomaterials Summer School, Tsukuba, July 2007

Oxide nanoparticles: MnFe₂O₄

No evidence for a magnetic "dead layer" in well-capped, crystalline nanoparticles.

 $\frac{KV}{25k_B}$ T_B

Masala and Seshadri, Chem. Phys. Lett. 402 (2005) 160.

Oxide nanoparticles: CoFe₂O₄

X-ray diffraction data and Rietveld refinement: Inverse spinel structure $Fe(CoFe)O_4$. Fd-3m (227)

Oxide nanoparticles: CoFe₂O₄

Temperature effects:

Hysteresis at low temperature (5K) and at RT (300K)

Size effects:

Samples have sizes between 5 nm and 14 nm

Particle interaction effects:

Particles as pressed powder and dilute in wax

Oxide nanoparticles: CoFe₂O₄

Oxide nanoparticles: CoFe₂O₄

- Temperature effects: Coercivity higher at low temperatures
- Size effects: Saturation magnetization does not change with size; coercivity changes with size; blocking temperature increases with size
- Interparticle interaction effect: Coercivity of noninteracting particles is higher. Record at 5 K (near 3 T)
- Shape of hysteresis loop distinct (powder vs. wax)
- Blocking temperature increases with dilution
- Remanence ratio increases with dilution

Oxide nanoparticles: CoFe₂O₄

7.9 ± 0.5 nm spheres

(100)

~12 nm cube

4 nm

~9 nm cubes

Song and Zhang, J. Am. Chem. Soc. 126 (2004) 6164.

Oxide nanoparticles: Unusual phases

Wurtzite CoO

Decomposing Co(acac)₂ in refluxing dibenzylether gives CoO in the wurtzite modification.

Risbud *et al. Chem. Mater.* **17** (2005) 834-838.

Disordered, *Fm-3m* (225), non-magnetic

Ordered, *P4/mmm* (123), magnetic

Platinum, being heavy, induces spin-orbit coupling, resulting in high *K*

Intermetallics: FePt

Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices Shouheng Sun, et al. Science 287, 1989 (2000); DOI: 10.1126/science.287.5460.1989

Films of nanoparticles annealed to up to 500°C to induce ordering and coercivity. 5 nm particles are coercive at RT.

Intermetallics: FePt

Stoichiometric amounts of $Na_2Fe(CO)_4$ and $Pt(acac)_2$

Oleylamine or oleylamine/oleic acid as surfactants

Stir at 70°C for 1 h, reflux in various solvents

T(°C) Time(min) Phase **Educts** Solvent octyl ether ~270 60 fcc reagents nonadecane ~310 60 fct reagents fct sample ~335 120 fct tetracosane fcc sample ~336 120 tetracosane fct fcc sample ~321 600 fct tetracosane fcc sample 1200 ~265 fct tetracosane

Initial experiments:

Core grown first (from metal acetylacetonates) and then shell. The idea is to prepare interfaces, such as would be obtained by heteroepitaxy, from solution.

many m² of interface rather than mm²

Spinel $CoFe_2O_4$ is a hard ferrimagnet and $ZnFe_2O_4$ is soft. Lattice parameters are nearly the same.

Problem in the characterization: Co, Fe, Zn are nearly indistinguishable by x-rays and by electrons

Neutron data from NPDF, Los Alamos, fitted using a two-spinel model.

Single blocking temperature: The blocking temperature of the core/shell nanoparticles increases with the amount of hard magnetic material.

How should the magnetic interface behave ? Epitaxial thin film results from Y. Suzuki, *Annu. Rev. Mater. Res.* 15

dispersed in wax

Smooth scaling of coercivity with increasing amounts of the soft component.

Masala *et al.*, *Solid State Sci.* **8** (2006) 1015-1022.

Co/CoO

Hysteresis loops of fine oxide-coated particles of cobalt taken at 77° K. The dashed lines show the hysteresis loop when the material is cooled in the absence of a magnetic field. The solid lines show the hysteresis loop when the material is cooled in a saturating magnetic field.

Meiklejohn, Bean, *Phys. Rev.* 102 (1956) 1413.

Magnetoresistive angle sensor:

Modified from Grünberg, *Phys. Today* 54 (2001) 34

FMAFM \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \downarrow <td

spins of FM are pinned to those of the AFM

additional energy (crystal anisotropy of AFM)

Preparation: CoFe₂O₄ (core), Mn(acac)₂ Oleylamine/oleic acid 200°C and reflux in benzyl ether

Antiferomagnetic MnO grown over ferrimagnetic CoFe₂O₄.

The phases become visible by TEM because they are structurally distinct.

X-ray diffraction indicates the clear presence of two phases; rock salt MnO and spinel $CoFe_2O_4$

Exchange biasing.

O. Masala and R. Seshadri, J. Am. Chem. Soc. **127** (2005) 9354-9355.

Oxides: Molten salt prepn. of complex oxides

La_{1-x}Sr_xMnO₃

Oxide prepared from nitrates in NaNO₃/KNO₃ flux

Refluxing in 2-pyrrolidone caps and disperses particles

Y. Tian, D. Chen, and X. Jiao, $La_{1-x}Sr_xMnO_3$ (x = 0, 0.3, 0.5, 0.7) Nanoparticles nearly freestanding in water: Preparation and magnetic properties, Chem. Mater. **18** (2006) 6088-6090.

ChemComm

E. S. Toberer and R. Seshadri, Template-free routes to porous inorganic materials, J. Chem. Soc. Chem. Commun. (2006) 3159-3165.

> UC SANTA BARBARA engineering

- Phase segregation in block copolymers and polymer melts
- The formation of Raney Ni
- Spinodal decompositions

The key is tethering:

- Covalent (copolymers)
- Electrostatic (hybrid materials)
- Kinetic (metals, ceramics)

Toberer and Seshadri, Adv. Mater. 17 (2005) 2244

Hierarchically Porous Mn

Macropore network remains intact and grains remain well-connected

Hierarchically Porous Mn

200 nm UC SANTA BARBARA ndineerin

BET, SEM, and TEM suggest ~50 nm pores

Hierarchically Porous Mn

Hierarchically Porous Mn

TEM: Pore walls are {100} faces; lowest energy faces of rocks salt

Toberer, Löfvander, and Seshadri, *Chem. Mater.* **18** (2006) 1047.

Hierarchically Porous Mn

Sintered Mn_3O_4 reduced in 5% H_2/N_2

- Titania is used in:
- photocatalysis
- Grätzel cells
- water purificaiton
- sensing

Interesting morphologies in the intermediate stages of leaching.

Toberer, Epping, Chmelka, and Seshadri, *Chem. Mater.* **18** (2006) 6345. Other early transition metal oxides (V, Nb, Cr W, ...)

Single-domain Ni nanoparticles on porous MnO, prepared by reducing $Mn_{3-x}Ni_xO_{4.}$ (a) through (d) are increasing x.

 $\frac{Mn_{3-x}Ni_{x}O_{4}}{(3-x)MnO + xNi}$

The Ni loops, after field cooling, are shifted on the field axis because of antiferromagnetic MnO.

The extent of exchange biasing (at 5 K) scales with the inverse diameter of the Ni particles.

The coercivity (at 5 K) is increased as well, as the extent of exchange bias increases. A way of hardening soft magnets.

Other systems: Co on MnO.

In progress: CoO and Cr_2O_3 -based systems.

Summary

Much yet to be learned from even simple nanomagnetic systems: For example, size effects on antiferromagnets.

Simple ways of achieving complex magnetic nanoarchitectures

Questions ?

