Compositional tuning of functional inorganic materials: Examples of phosphors and catalysts

Ram Seshadri

Materials Department, and Department of Chemistry & Biochemistry Materials Research Laboratory, UC Santa Barbara CA 93106 http://www.mrl.ucsb.edu/~seshadri +++ seshadri@mrl.ucsb.edu

Overview: Strategies for new functional materials

1. Make a material (new structure, new composition...) that displays the function sought (eg. HgBa₂CuO_{4+ δ}, T_C = 94 K)

Putilin, Antipov, Chmaissen, Marezio, *Nature* **362** (1993) 226–228.

UCSB Materials Colloquium 4/16/2010

2. Take a known structure type and tune the composition to achieve the desired function (*eg.* PZT)

Noheda, Cox, Shirane, Guo, Jones, Cross, *Phys. Rev. B* **63** (2000) 014103(1–9).

Compositional tuning within a given structure type

La_{1-x}Ca_xMnO₃: Colossal magnetoresistance, charge-ordering

- $PbZr_{1-x}Ti_{x}O_{3}$: Piezoelectric tuning
- Ba_{1-x}Sr_xTiO₃: Capacitors
- La_{2-x}Sr_xCuO₄: Superconductivity
 - $V_{2-x}Cr_{x}O_{3}$: Insulator-metal transitions
 - $Al_{2-x}Cr_{x}O_{3}$: Ruby

Today: Phosphors and catalysts

Ce³⁺ phosphors:

Dr. Won Bin Im

Professor Steven DenBaars, Dr. Hisashi Masui, Dr. Natalie Fellows, Stuart Brinkley, Dr. Jerry Hu, Dr. Alexander Mikhailovsky

support: Solid State Lighting and Energy Center

Pd²⁺ catalysts:

Dr. Jun Li, Joshua Kurzman

Professor Susannah Scott, Dr. Udayshankar Singh, Xiaoying Ouyang

support: NSF-IGERT, Department of Energy

Research group, January 2010

Ce³⁺ phosphors for solid state white lighting

LEDs: Converting electricity to light (not heat !)

Solid state lighting strategies

- Tricolor LEDs with no need for phosphors
- . UV LED + RGB phosphors
- . Blue LED + yellow/orange phosphors

Some applications of solid state lighting

The Chanel Building in Osaka (Peter Marino Architect).

LED lamps for indoor cultivation

90% Less Heat 50,000 Hour Rated LEDs Made in USA No Heat Signature Cut Your Electricity Bill *High Times* Magazine

The L Prize

6o W Incandescent Replacement Lamp

- More than go Im/W
- Less than 10 watts
- More than goo lumens
- More than 25,000 hour life
- More than 90 CRI
- Between 2700 K 3000 K CCT

The need: A means of efficiently converting blue light from InGaN LEDs to white light with high color rendition.

The task: Understand how known Ce³⁺ phosphors work, and develop new hosts that outperform current ones. Explore known structure types *via* compositional tuning.

Requires tools to understand local structure around Ce³⁺ of phosphors.

The outcome: Finding out that making new, efficient phosphors is very hard !

Understanding Ce³⁺ phosphors

Ce is $[Xe]_4f^15d^16s^2$ Ce³⁺ is $[Xe]_4f^15d^06s^0$ Ce⁴⁺ is $[Xe]_4f^05d^06s^0$

The transition from 4f to 5d in Ce³⁺ is spin allowed – it is narrow and takes place in the UV in isolated Ce³⁺ atoms.

In solids, the crystal field broadening of the 5*d* states allows absorption in the near-UV/blue, and emission in the visible.

The canonical material: Y₃Al₅O₁₂:Ce³⁺ (Blasse)

Garnet crystal structure: AIO_4 tetrahedra and AIO_6 octahedra, all completely cornerconnected.

Y occupies 8-coordinate voids formed by AIO_n polyhedra.

Pyrope Almandine Spessartine Andradite Grossular Uvarovite $\begin{array}{l} Mg_{3}Al_{2}Si_{3}O_{12}\\ Fe_{3}Al_{2}Si_{3}O_{12}\\ Mn_{3}Al_{2}Si_{3}O_{12}\\ Ca_{3}Fe_{2}Si_{3}O_{12}\\ Ca_{3}Al_{2}Si_{3}O_{12}\\ Ca_{3}Cr_{2}Si_{3}O_{12}\\ \end{array}$

The canonical material: Y₃Al₅O₁₂:Ce³⁺ Why?

UCSB Materials Colloquium 4/16/2010

Rigid 3D connectivity – a consequence of low charge on Al³⁺ [Pauling's rules].

Large band gap because of Al, and connectivity.

Stiff lattice because of connectivity and light elements: Also low quenching (incl. thermal).

Single site for Ce³⁺: Low disorder, and hence fewer non-radiative pathways.

Ce³⁺ substitutes smaller Y³⁺: larger 5*d* crystal-field splitting on Ce³⁺.

Some other phosphor hosts for Ce³⁺

The Ce³⁺ phosphor periodic table palette

LaSr₂AlO₅, a new Ce³⁺ phosphor host

LaSr₂AlO₅:

Why?

$$[Sr_{3}]^{6+} Si^{4+} O_{5} (known host)$$
$$[LaSr_{2}]^{7+} Al^{3+} O_{5}$$

How?

Prepared from La_2O_3 , SrCO₃, Al₂O₃, CeO₂ 1400°C to 1500°C, 5%H₂/N₂, 4 h

LaSr₂AlO₅

Appropriate absorption and emission positions for blue + yellow = white. Maximum emission intensity for 2.5 atom-% Ce³⁺ substitution.

LaSr₂AlO₅

 $\begin{array}{c} 0.45 \\ 0.40 \\ 0.35 \\ 0.35 \\ 0.30 \\ 0.30 \\ 0.30 \\ 0.35 \\ 0.35 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.45 \\ 0.40 \\ 0.45 \\ 0.40 \\ 0.45 \\ 0.40 \\ 0.45 \\ 0.40 \\ 0.45 \\ 0.40 \\ 0.45 \\ 0.40 \\ 0.45 \\ 0.45 \\ 0.40 \\ 0.45 \\ 0.45 \\ 0.40 \\ 0.45 \\ 0.$

Im, Kim, Fellows, Masui, Hirata, DenBaars, Seshadri, *Appl. Phys. Lett.* **93** (2008) 091905.

Phosphor mounted on an

Good color rendering, but

YAG:Ce³⁺.

efficiency poor compared to

InGaN chip (Natalie Fellows).

LaSr₂AlO₅: Tunability

Im, Fellows, DenBaars, Seshadri, Kim, Chem. Mater. 21 (2009) 2157

LaSr₂AlO₅: Local structure

Maximum entropy image restoration of the electron density from synchrotron x-ray data suggests nonspherical electron density at the mixed La/Sr site.

LaSr₂AlO₅: Local structure

(a) PDF G(r) suggests local coordination of La and Sr are distinct; not well described by the average structure.

(b) Better fit using a structure that allows distinct coordination.

LaSr₂AlO₅: Local structure

PDF local coordination of La and Sr are distinct; modeled using an ordered structure.

Coordination of La/Ce more regular than suggested by average structure.

counts per cell

Im, Page, Fellows, DenBaars, Seshadri, *J. Mater. Chem.* **19** (2009) 8761.

LaSr₂AlO₅-Sr₃SiO₅ solid solution

UCSB Materials Colloquium 4/16/2010

Solid solutions between two end-members with distinct crystal structures.

UC SANTA BARBARA science & engineering

LaSr₂AlO₅-Sr₃SiO₅ solid solution

Emission intensity in the solid solution goes through a maximum.

Absorption and emission features remain appropriate for white lighting.

Much more efficient phosphor than the LSA endmember.

Im, Fellows, DenBaars, Seshadri, J. Mater. Chem. 19 (2009) 1325.

Oxyfluorides: $Sr_{3-x}AlO_4F:Ce^{3+}x$

Sr₃AlO₄F (*I*4/*mcm*, 140)

Compound, with (suggested) well ordered fluorine layers

Modification of the the LSA phosphor

 $LaSr_2AIO_5 \leftrightarrow Sr_3AIO_4F$

La³⁺ changed to Sr²⁺ Fluoride for charge compensation

Two Sr sites for Ce³⁺ with distinct environment of O/F

Vogt et al. J. Solid State Chem. 144 (1999) 228.

$Sr_{3-x}Ba_{x}AlO_{4}F:Ce^{3+}$, an efficient green phosphor:

atoms	site	BVS
Sr	8h	1.99
Ba	4 <i>a</i>	1.93

Ba addition into SAF:Ce³⁺ stabilizes the host

a = *b* = 6.9189(6) Å, *c* = 11.2071(7) Å

$Sr_{3-x}Ba_{x}AlO_{4}F:Ce^{3+}$, an efficient green phosphor:

Locating F in the structure is key since optical properties depend on the nature of the $Ce^{3+}O_xF_y$ coordination.

BABA (back-to-back) 2D MAS NMR, of ¹⁹F, following the single-quantum/doublequantum correlations allows a picture of F positions to emerge.

3 is impurity.

2—2 correlations are importan
1—2 correlations are importan
1—1 are not.

Dr. Jerry Hu, UCSB MRL

$Sr_{3-x}Ba_{x}AlO_{4}F:Ce^{3+}$, an efficient green phosphor:

Quantum efficiency (QE) data

Sample	QE (%)	
SAF:Ce ³⁺	83	
SBAF:Ce ³⁺	95	
YAG:Ce ³⁺	81	

30 lm/W at 20 mA (λ_{max} =405 nm chip)

Prototype LED image

Im, Fourré, Brinkley, Sonoda, Nakamura, DenBaars, Seshadri, *Optics Express* **17** (2009) 22673; Im, Brinkley, Mikhailovsky, Hu, DenBaars, Seshadri, *Chem. Mater.* (ASAP).

Pd²⁺ -substituted oxides for catalysis

PGM use

Motivation: Reducing PGM use in catalysts

PGM = Platinum Group Metal

Fe	Со	Ni	Cu
Ru	Rh	Pd	Ag
Os	lr	Pt	Au

Data from kitco.com

PGM use

More that 50% of Pt use is in automotive catalysis: 3way converters.

Price today (kitco):

Pd: \$529/Troy oz. Pt: \$1692/Troy oz.

Data from kitco.com and google finance

PGMs: A dwindling resource

Earth's Natural Wealth: An Audit, New Scientist, 23 May 2007.

Three-way catalytic convertors

Catalyst: Oxide-supported PGM nanoparticles dispersed on ceramic honeycombs

hydrocarbons + $CO + NO_x$

The conversion should (in principle) leave the catalyst unchanged

© Copyright Johnson Matthey Plc 2007

New catalyst paradigms

"Intelligent catalysts"

Nishihata, Mizuki, Akao, Tanaka, Uenishi, Kimura, Okamoto, Hamada, Self-regeneration of a Pd-perovskite catalyst for automotive emissions control, *Nature* **418** (2002) 164.

The need: Make better use of PGMs in catalysis, especially 3-way.

The task: Verify that catalysts can be "intelligent" look for new hosts, new mechanisms ...

Requires close collaboration between people working in heterogeneous catalysis and in inorganic materials.

The outcome: A new paradigm for catalysis: Catalysis by PGM ions ?

BaCeO₃:Pd

Perovskite BaCeO₃ as a host:

Ba²⁺ creates an oxide lattice that is highly oxidizing; Ce⁴⁺/ Ce³⁺ are large and somewhat forgiving in terms of coordination.

BaCe_{1-x}Pd_xO_{3- δ} with x = 0, 0.05, and 0.10

Samples prepared by solid state routes in O_2 , between $800^{\circ}C$ and $1000^{\circ}C$.

Neutron refinements [NPDF, Los Alamos] $\Rightarrow \delta \sim x$ so Pd in lattice is Pd²⁺

BaCeO₃:Pd: Modeling the substitution

DFT optimized structure of 2x2x2 perovskite cell with one Pd²⁺ substituting Ce⁴⁺ and one oxygen vacancy: x = 12.5 [Bennett and Rappe, Penn]

The oxygen vacancy prefers to be proximal to Pd²⁺ and leaves it nearly square planar.

BaCeO₃:Pd: Modeling the substitution

BaCeO₃:Pd: Intelligent ?

Egress of Pd as *fcc*-Pd upon H_2 reduction of x = 0.10 at different temperatures $[5\%-H_2/95\%-N_2]$

BaCeO₃:Pd: Intelligent ?

Ingress of Pd into the perovskite on heating the reduced two-phase sample in O₂ at different temperatures.

BaCeO₃:Pd: Intelligent ?

Pd core levels of the oxidized and reduced samples.

Li, Singh, Bennett, Page, Weaver, Zhang, Proffen, Rappe, Scott, Seshadri, *Chem. Mater.* 19 (2007) 1418.

YFeO₃:Pd

YFeO₃ exists as a stable perovskite or a metastable (sol-gel prep.) hexagonal compound with the YAlO₃ structure. 5-coordinate Fe³⁺ in the hexagonal structure.

YFeO₃:Pd

Neutron diffraction [NIST, BT-1] confirms substitution up to 8%.

YFeO₃:Pd – Ingress and egress of Pd

Fe core levels unchanged with oxidation/reduction.

Pd core levels suggest ingress and egress under redox. Not all Pd²⁺ reduced.

YFeO₃:Pd – Ingress and egress of Pd

Pd nanoparticles seen after reduction in backscattering SEM and in TEM

YFeO₃ [10%Pd] as-prepared

50 nm

after 1st reduction [also (c) and (d)]

BaCeO₃:Pd: The catalytically active species

Good CO oxidation catalyst despite low surface area. The best catalyst is actually the as-prepared or re-oxidized sample with Pd²⁺

Singh, Li, Bennett, Rappe, Seshadri, Scott, J. Catal. 249 (2007) 349.

Y(Fe/Mn)O₃:Pd: The catalytically active species

Again, the oxidized compound with Pd²⁺ is the better catalyst

Li, Singh, Schladt, Stalick, Scott, Seshadri, Chem. Mater. 20 (2008) 6567.

Ce³⁺ phosphors:

New phosphor materials, better understanding ...

Pd²⁺ catalysts:

A new catalyst paradigm, better catalysts ...

