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Principles and Applications of Ferroelectrics and Related 
M. E. Lines, A. M. Glass. OUP Oxford, 2001

All of these materials display thermal phase transitions 
to a compound with a polar point group
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Thermal evolution of a 
ferroelectric

Ferroelectric soft mode: A 
vibration that goes to 0 
frequency at the transition 
(upon cooling to the polar 
phase)
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From H. W. Megaw, Ferroelectricity 
in Crystals, Methuen, London, 1957

The original discovery by Valacek in Rochelle salt, in 
1921. The Sawyer-Tower circuit for measurements is 
shown below.

Rochelle salt: Potassium sodium tartrate tetrahydrate, 
(KNaC4H4O6·4H2O) 

David Brewster in 1824 demonstrated 
piezoelectric effects thereon, which led to him naming 
the effect pyroelectricity.



Hydrogen-bonded ferroelectricity
in Rochelle’s salt.
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Hydrogen-bonded ferroelectricity in potassium 
dihydrogen phosphate (KDP); early neutron diffraction 
work.
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Eg

A1g Splitting of the 
structural soft 
mode (Raman 
active below Ta)

Ta

Antiferrodistortive transition in SrTiO3 in R-point of the 
Brillouin zone

Polar Materials and Ferroelectrics: SrTiO3 (on the cusp of becoming ferroelectric)



Ferroelectric SM

Structural SM (doublet)

Mode frequencies 
on STO ceramics 

(Petzelt et al., PRB 
64, 184111 (2001))
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Experiment:
 crystal (Hyper-Raman) 
 2 µm-grained ceramics (BWO)
 2 µm-grained ceramics (MW) 
 100 nm-grained ceramics (diel. meas. 100 kHz)

Theoretical model:
 2 µm-grained ceramics, eps(GB)=100, x= 7 nm
 100 nm grained, eps(GB)=100, x= 7 nm
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Order-disorder model for
BaTiO3 phase transitions

Dynamically disordered Ti

Ordered Ba
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TO1 mode in BaTiO3 single crystal
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Polar Materials and Ferroelectrics: Bulk and nanoscale BaTiO3

Page, Proffen, 
Niederberger,  
Seshadri, Probing local 
dipoles and ligand 
structure in BaTiO3 

nanoparticles, Chem. 
Mater. 22 (2010) 4386–
4391. 
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Antiferroelectrics: The example of PbZrO3


