2019 CHEM2C: Assignment 2

Ram Seshadri (seshadri@mrl.ucsb.edu) with Dr. Joya Cooley

Due date: April 18 2019 (in class). Keep everything brief.

- 1. According to thermodynamics, the transformation from diamond to graphite is spontaneous with $\Delta G^{\circ} = -2.90 \text{ kJ mol}^{-1}$. However, your diamond ring hasn't turned into graphite because of the kinetics of the reaction. Estimate the rate constant and half-life (assuming first-order) of this reaction is the preexponential factor is $A = 1 \text{ s}^{-1}$ and $E_a = 540 \text{ kJ mol}^{-1}$ at T = 298 K. NB: The approximate age of the sun is $1.4 \times 10^{17} \text{ s}$ and approximate age of the universe $4.3 \times 10^{17} \text{ s}$).
- 2. The rate constant *k* for the reaction $H_2 + I_2 \longrightarrow 2 HI$ has been determined at two temperatures:

T (K)	$k (\mathrm{M}^{-1} \mathrm{s}^{-1})$
599	5.4×10^{-4}
683	$2.8 imes 10^{-2}$

- (a) Calculate the activation energy for the reaction.
- (b) At what temperature will the rate constant for the reaction have the value $k = 5.0 \times 10^{-3} \text{ M}^{-1} \text{ s}^{-1}$?
- 3. Derive the rate law for the following iodide-hypochlorite reaction in aqueous solution. $OCl^- + H_2O \xrightarrow[k_{1}]{} HOCl + OH^- Fast [rxn. 1]$ $I^- + HOCl \xrightarrow{k_2} HOI + Cl^- Slow [rxn. 2]$

 $I^{-} + HOCI \xrightarrow{\longrightarrow} HOI + CI^{-} Slow [rxn. 2]$ HOI + OH⁻ $\stackrel{k_3}{\underset{k_{-3}}{\longrightarrow}} H_2O + OI^{-} Fast [rxn. 3]$

4. One proposed mechanism for the formation of a double helix in DNA is given by the following reactions. Where S_1 and S_2 represent strand 1 and 2, and $(S_1-S_2)^*$ represents an unstable helix. Write the rate of reaction expression for the formation of the double helix.

1.
$$S_1 + S_2 \xrightarrow[k_1]{k_1} (S_1 - S_2)^*$$

2. $(S_1 - S_2)^* \xrightarrow{k_2} S_1 - S_2$