MATRL 100A: Structure and Properties I, Assignment 5

This assignment is due on Wednesday, November 15.

Chapter 12

- 1. Show that the minimum cation to anion radius ratio for a coordination number of 6 is 0.414. *Hint: think of the NaCl crystal structure but with the Cl ions just touching each other and just touching the cations.*
- 2. Sketch the (100), (110), (111), and (200) planes for $BaTiO_3$ (perovskite crystal structure).
- 3. Calculate the APF and theoretical density of CaF_2 (fluorite) given the following relevant information:

Ion	Radius (nm)	Atomic Mass (g/mol)
Ca^{2+}	0.100	40.078
F^{-}	0.133	18.988

- 4. Sapphire consists of an HCP-like arrangement of O^{2-} anions with the much smaller Al^{3+} cations filling in octahedral interstitial sites.
 - (a) How many octahedral interstitial sites are there per oxygen anion?
 - (b) What fraction of octahedral interstitial sites must be full of aluminum cations to satisfy charge balance?
 - (c) Sketch two basal planes of O^{2-} anions on top of each other. Identify the octahedral interstitial sites and shade in the ones that are full of Al^{3+} .
 - (d) Calculate the cation to anion radius ratio by looking up the radius of Al³⁺ and O²⁻. What type of interstitial site would you expect aluminum to fill based on your result? Comment on why this prediction is incorrect in this case. *Hint: think about the assumptions of the hard sphere model.*
 - (e) Pure Al_2O_3 sapphires are optically clear. However, natural sapphires can have a wide variety of colors due to impurities. Describe what kind of vacancies would form, and how many there would need to be per impurity ion of the following species: Ti^{4+} (blue coloration), Mg^{2+} (pink coloration), and Cr^{3+} (red coloration). Assume oxygen interstitials are too high energy to form.
- 5. Would you expect Frenkel defects for anions to exist in ionic ceramics in relatively high concentrations? Why or why not?
- 6. The mole fraction of Schottky defects (N_s/N) in a hypothetical MO oxide ceramic was measured to be 2.8 * 10^{-27} at room temperature. How many Schottky pairs per ion would you expect to find at 1250°C.

MATERIALS 100A