MATRL 100A: Structure and Properties I, Assignment 3

This assignment is due on Wednesday, October 25.

Chapter 3

1. Estimate the density of a neutron star by assuming it consists of a close packed arrangement of neutrons. $m_n = 1.675 * 10^{-27}$ kg (≈ 1 amu) and $r_n = 2.0$ fm.

Fun fact: Large neutron stars can actually exceed this density slightly. It is proposed that the cores of these stars form exotic phases of matter such as a Bose-Einstein condensate or supercritical fluids, but no one knows for sure.

- 2. Show that the c/a ratio for an ideal HCP packing (ideal means each atom has 12 nearest neighbors with same bond length to each) is 1.63. *Hint: look for tetrahedra with side length a in the conventional hexagonal unit cell.*
- 3. Draw the following crystallographic directions in a cubic unit cell
 - (a) [110]
 - (b) [021]
 - (c) $[2\overline{1}2]$
- 4. Draw the following crystallographic planes in a cubic unit cell
 - (a) (111)
 - **(b)** (012)
 - (c) $(20\overline{1})$
- 5. Identify the crystallographic directions shown in the unit cell below.

MATERIALS 100A

6. Identify the crystallographic planes shown in the unit cells below.

- 7. An X-ray diffraction peak for the (111) plane in silver (FCC) is found at $2\theta = 38.2^{\circ}$ when Cu K- α radiation is used. Given that the Cu K- α wavelength is 0.154 nm, compute the following for silver:
 - (a) Interplanar spacing (d) of the (111) planes (Bragg Law)
 - (b) Lattice constant (Equation 3.22)
 - (c) Radius of a silver atom
 - (d) Mass of a silver atom given that the density of silver is 10.5 g/cm^3