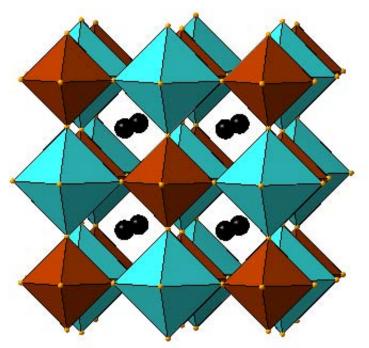

Elpasolite and cryolite are the halide minerals with the ordered double perovskite structure. The formulae are K_2NaAlF_6 and Na_2NaAlF_6 as well as variants thereof. Cryolite $[Na_2NaAlF_6]$ is well known from its use as a solvent in the Hall-Héroult process of extracting Al from Al_2O_3 electrochemically.



two different B cations:

$$A_2BB'O_6$$

a = $2a_p$ = 8 Å *Fm-3m*

A at (1/4 1/4 1/4)
B at (0 0 0)
B' at (1/2 1/2 1/2)
O at (x 0 0); x ~ 1/4

A typical oxide double perovskite Ba₂MgWO₆: The larger octahedra surround Mg²⁺

Typically rather large differences in charge are required for the B and B' to be fully ordered. Some ions tend to order easily (eg. Mn^{3+,} Cu²⁺, while some others such as Cr³⁺ do not.

The standard reference is: M. T. Anderson, K. B. Greenwood, G. A. Taylor, and K. R. Poeppelmeier, Prog. Solid State Chem. 22 (1993) 197.

0.228

A = Ca, Ba

A₂YbThO₆

-		-	
Rock	ь.		и
noci	v		44

 Δ IR

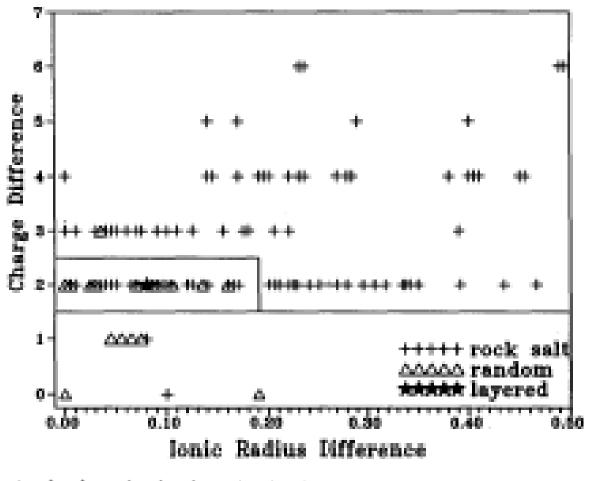
								110.	- conspos		
		Rock	Self					1.	Ba ₂ PrPtO ₆		0.100
No.	compound	ΔIR	comments			Rock	Salt				
1.	A ₂ AINbO ₆	0.115	A = Ca, Sr	No.	compound	ΔIR	comme	nts			
2.	A ₂ AlTaO ₆	0.115	A = Ca, Sr	44.	Ba ₂ BiBiO ₆	0.270					
3.	A ₂ CrMoO ₆	0.005	A = Ca, Sr	45.	Ba_2BiDyO_6	0.152					
4.	A ₂ CrOsO ₄	0.040	A = Ca, Sr	46.	Ba_2BiSbO_6	0.160					
5.	A ₂ CrReO ₃	0.025	A = Ca, Sr	47.	Ba ₂ BiYO ₆	0.140					
6.	A ₂ CrWO ₄	0.005	A = Ca, Sr	48.	Ba ₂ CrUO ₆	0.225					
7.	A ₂ DyNbO ₆	0.272	A = Ca, Sr, Ba	49.	Ba_0ErUO_6	0.050					
8.	A ₂ DyTaO ₆	0.272	A = Ca, Sr, Ba	50.	Ba_2EuTaO_6	0.307					
9.	A ₂ ErNbO ₆	0.250	A = Ca, Sr, Ba	51.	$BayGdSbO_0$	0.338					
10.	AgErThO ₆	0.250	A = Ca, Sr, Ba	52.	Ba ₂ InSbO ₆	0.200	tentative		Charg	re dif	f. 1 and 2
11.	A ₂ FeMoO ₈	0.035	A = Ca, Sr, Ba	53.	Ba ₂ LaRuO ₈	0.467			Cilaig	oc an	ii i ana z
12.	A ₂ FeSbO ₅	0.050	A = Ca, Sr	54.	Ba_0LuTaO_0	0.221					
13.	A ₂ FeUO ₆	0.205	A = Sr. Ba	55.	Ba_2RhNbO_6	0.040					
14.	A ₂ GdNbO ₆	0.298	A = Ca, Sr	56.	BagScNbO ₆	0.105					
15.	A ₂ GdTaO ₆	0.298	A = Ca, Sr, Ba	57.	Ba ₂ ScSbO ₄	0.145				Rock	30-48
16.	A ₂ HoNbO ₆	0.261	A = Ca, Sr	58.	Ba ₂ ScTaO ₆	0.105					
17.	A ₂ HoTaO ₆	0.261	A = Ca, Sr, Ba	59.	Ba_0SeUO_6	0.095	No.		empound	ΔIR	comments
18.	A ₂ InNbO ₆	0.160	A = Ca, Sr, Ba	60.	Ba ₂ YUO ₆	0.060	1.	Ababi	i₩0 ₈	0.140	A = Sr, Ba
19.	AginOsO ₆	0.225	A = Sr, Ba	61.	Ca ₂ CcNbO ₆	0.025	2.	BaLal	KWO ₆	0.840	•
20.	A ₂ InReO ₆	0.220	A = Sr, Ba	62.	Ca ₂ CrTaO ₄	0.025	3.		LiMeO ₆	0.170	
21.	AsInTaO ₆	0.160	A = Ca, Sr, Ba	63.	Ca ₂ FeNhO ₆	0.005	4.		NaWO _B	0.400	
22.	A ₂ InUO ₅	0.040	A = Sr, Ba	64.	Ca_2FeTaO_6	0.005	5.		aUOs	0.290	
23.	A ₂ LaNbO ₄	0.392	A = Ca, Ba	65.	CaLaCaRuO _a	0.435	0.	CHEMIN	acros	0.200	
24.	A ₂ LaTaO ₅	0.392	A = Ca, Ba	66.	La ₂ ColrO ₅	0.120					
25.	A ₂ LuNbO ₆	0.221	A = Sr, Ba	67.	La ₂ CuMnO ₈	0.070					
26.	A ₂ LuRuO ₆	0.296	A = Sr, Ba	68.	La ₂ MgIrO ₆	0.090	tentative		Chai	rge d	iff 5
27.	A ₂ MnUO ₆	0.205	A = Sr, Ba	69.	LogCulrO ₆	0.025	Ln = La, No	d	Citai	ige u	111. J
28.	A ₂ NdNbO ₆	0.343	A = Ca, Ba	70.	Nd ₂ MgTiO ₆	0.115	•				
29.	A ₂ NdTaO ₆	0.343	A = Sr. Ba	71.	Pb_2InNbO_6	0.160					
30.	A ₂ PrNbO ₄	0.350	A = Ca, Ba	72.	Pb ₂ ScTaO ₅	0.105					
31.	A ₂ PyThO ₆	0.350	A = Ca, Sr, Ba	73.	Pb ₂ YbNbO ₈	0.228					
32.	A ₂ S ₀ O ₈ O ₈	0.170	A = Sr, Ba	74.	Sr ₂ CoSbO ₆	0.010					
33.	A ₂ ScReO ₆	0.165	A = Ca, Se , Ba	75.	Sr ₂ CrNbO ₆	0.025					
34.	A ₂ SmNbO ₆	0.318	A = Ca, Sr, Ba	76.	Sr_2CrSbO_0	0.015					
35.	A ₂ SmTaO ₄	0.318	A = Ca, Sr, Ba	77.	Sr ₂ EuNbO ₆	0.307					
36.	A ₂ TbNbO ₆	0.283	A = Ca, Sr, Da A = Ca, Sr	78.	Sr ₂ GaReO ₆	0.040					
37.	A ₂ TbTeO ₅	0.283	A = Ca, Sr, Ba	79.	Sr ₂ GaSbO ₄	0.020					
38.	A ₂ TmNbO ₆	0.240	A = Sr, Ba	80.	Sr ₂ MnMoO ₆	0.035					
39.	A ₂ YNbO ₆	0.260	A = Ca, Ba	81.	Sr ₂ RhSbO ₆	0.080					
40.	A ₂ YR ₂ O ₆	0.335	A = Ca, Sr, Ba	set i	41. Substitution	MARKET .					
41.	A ₂ YTaO ₆	0.260	A = Ca, St, Ba A = Ca, Ba								
42	A ₂ YbNbO ₆	0.228	A = Ca, Ba								
76.45	Agronous	9.449	A = 1/8, 08								

Materials 286 G: Structural Families of Functional Inorganic Materials Ram Seshadri x6129 seshadri@mrl

No.

compound

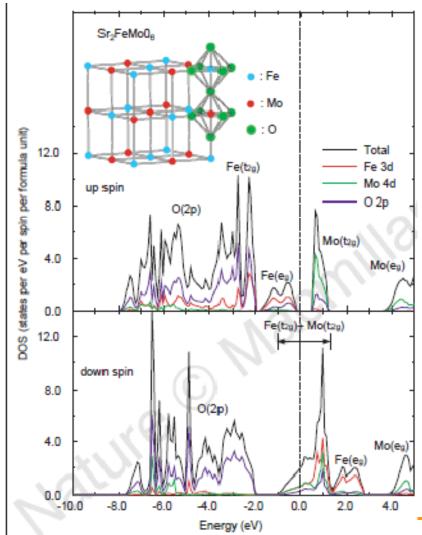
Class 8: Ordered double perovskites or elpasolites

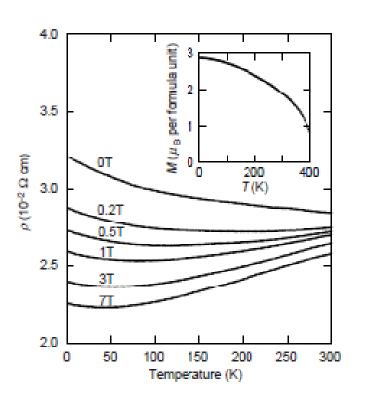

	Rock Salt					
No.	compound	ΔIR	comments	No.		
1.	ALaMgIrOs	0.015	A = Ca, Sr, Ba	1.		
2.	ALaMgMoO ₆	0.110	A = Ca, Sr, Ba	2.		
3.	ALaMnMoO ₆	0.220	A = Ca, Sr, Ba	3.		
4.	BaLaCoRuO ₆	0.180		4.		
5.	BaLaFeRuO ₀	0.200		5.		
6.	BaLaMgRuOs	0.155		6.		
7.	BaLaNiRuO _c	0.125		7.		
8.	BaLaZnRuO ₈	0.175		8. 9.		
9.	SrLaCoNbO ₈	0.105		10.		
10.	SrLaCoSbO ₆	0.145		11.		
11.	SrLaCoTaO ₄	0.106		12.		
12.	SeLaCuNbO ₈	0.040		13.		
13.	SrLaCuSbO ₆	0.000		14.		
14.	SrLaCuTaO ₄	0.040		15.		
15.	SrLaFeTaO ₆	0.140		16.		
16.	SrLaMgWO ₅	0.100		17.		
17.	SrLaMnWO ₆	0.210		18.		
18.	SrLaNiNbO ₆	0.050		19.		
19.	SrLaNiSbO ₅	0.090		20.		
20.	ScLaNiThO ₀	0.050		21.		
				22.		

		Rock Sult			
No.	compound	ΔIR	comments		
1.	A ₂ CoWO ₆	0.125	A = Sr, Ba		
2.	A ₂ CuWO ₈	0.000	A = Sr, Ba		
3.	A_2 FeWO ₅	0.270	A = St, Ba		
4.	A ₂ NiWO ₆	0.070	A = Sr, Ba		
5.	A ₂ ZnWO ₆	0.120	A = Sr, Ba		
6.	Ba ₂ BaOsO ₆	0.800			
7.	Ba ₂ BaUO ₆	0.620			
8.	Ba ₂ CaMoO ₆	0.410			
9.	Ba ₂ CaOsO ₆	0.455			
10.	$BayCaReO_0$	0.450			
11.	Ba ₂ CaUO ₆	0.270			
12.	Ba ₂ CaWO ₆	0.380			
13.	BayCdOsOs	0.405			
14.	Ba_2CdReO_6	0.400			
15.	Ba ₂ CdUO ₆	0.220			
16.	Ba_2CoReO_6	0.195			
17.	Ba ₂ CoUO ₆	0.015			
18.	Ba ₂ CuUO ₆	0.010			
19.	Ba_2FeReO_6	0.230			
20.	Ba_2MgReO_6	0.170			
21.	Ba ₂ MgUO ₆	0.010			
22.	Ba ₂ MgWO ₆	0.100			
23.	Ba ₂ MnReO ₆	0.280			

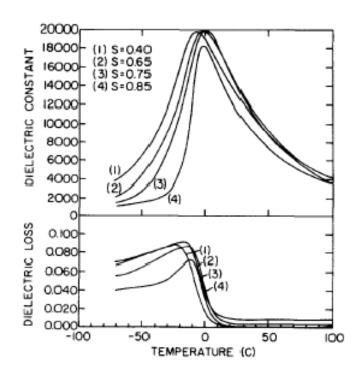
Charge diff. 3

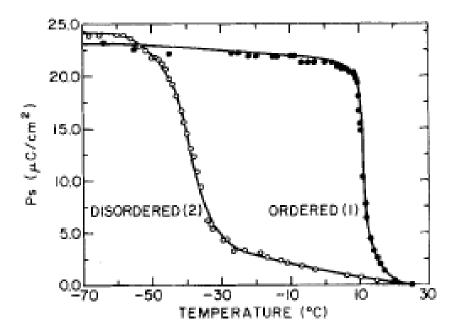
Charge diff. 4


Class 8: Ordered double perovskites or elpasolites

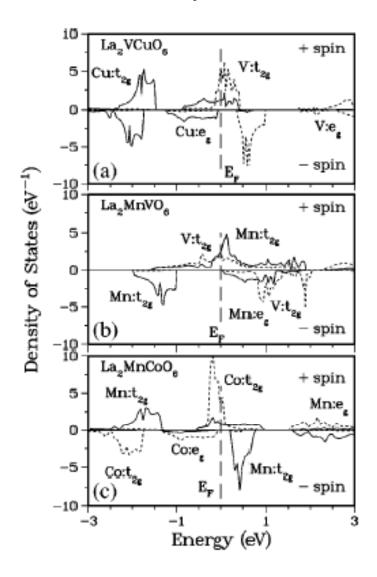


Random, rock-salt and layered structures


Kobayashi et al. Nature 395 (1998) 677



Ferromagnet below 420 K.


Class 8: Elpasolite applications: 2. Relaxor ferroelectrics, Pb₂ScTaO₆ etc.

N. Setter and L. E. Cross, J. Appl. Phys. 51 (1980) 4356.

W. E. Pickett, Phys. Rev. Lett. 57 (1998) 10618

"A nonmagnetic metal whose electrical conduction is 100% spin polarized seems like an oxymoron. However, this is only one of the peculiar properties of the unusual phase yclept half-metallic antiferromagnet by van Leuken and de Groot."