# **Structure analysis of Li-excess materials**

# Julija Vinckeviciute

Materials 286G June 2016

# **Overview of Li-excess materials**

Layered oxide materials show high capacities at a good voltage range



First discharge capacity (mAh/g)

Sparks, Ghadbeigi, Harada, & Lettiere (2015). Performance and resource considerations of Li-ion battery electrode materials. *Energy Environ. Sci.*, *8*, 1640–1650.

Li-excess materials have the highest capacities



First discharge capacity (mAh/g)

Sparks, Ghadbeigi, Harada, & Lettiere (2015). Performance and resource considerations of Li-ion battery electrode materials. *Energy Environ. Sci.*, *8*, 1640–1650.

### Classical Li layered oxides consist of layers of TM with Li<sup>+</sup> in between



### Li<sub>2</sub>MnO<sub>3</sub> has extra Li<sup>+</sup> in TM layers

Classical layered oxide  $R\overline{3}m$  in most cases



 $Li_2MnO_3$ C2/m due to J-T distortions



### Li-excess materials are a mixture of both



 $x \operatorname{Li}_2 \operatorname{NO}_3 \cdot (1-x) \operatorname{Li}_7 \operatorname{TMO}_2$ 

N = <u>Mn</u>, Ti, Zr TM = <u>Mn, Ni, Co</u>, Fe, Cr, Al, etc.

How these materials are structured remains under discussion

# A study of bulk structure in Li-excess materials and its affects on Li<sup>+</sup> migration

Usually, only the surface of the particle can be investigated

 $Li_{1.2}Mn_{0.567}Ni_{0.166}Co_{0.067}O_2$ 

**Conventional TEM** 



As synthesized



Slicing the particle allows for investigation of bulk structure

 $Li_{1.2}Mn_{0.567}Ni_{0.166}Co_{0.067}O_2$ 



cross-sectional thin transmission electron microscopy specimens (CSTTs)

### Investigation of a slice reveals multiple domains within grain



different crystallographic directions

### Investigation of a slice reveals multiple domains within grain

0

#### BF-TEM image of grain



ED image

 $\odot$ 

0

 $\bigcirc$ 

simulated ED image



#### **DF-TEM** images



### Domains are at an angle to each other

BF-TEM image of grain



### Each domain consists of regions of LiTMO<sub>2</sub> and Li<sub>2</sub>MnO<sub>3</sub>

Referred to as "twin domains"



### Stacking faults seen in Li<sub>2</sub>MnO<sub>3</sub>—like phase



### Use DFT to calculate migration formation energies



### DB may reduce Li<sup>+</sup> mobility



### There is evidence Ni segregation at surface and DB



Ni segregation may further impede Li<sup>+</sup> mobility along DB



### Summary:

## The structure of Li-excess materials has multiple levels of ordering



Structure could cause atom segregation and influence material properties like Li<sup>+</sup> diffusion



Supplemental slides

Li<sup>+</sup> moves into and out of the layers during discharge and charge

