Ram Seshadri

Materials Department, and Department of Chemistry and Biochemistry Materials Research Laboratory University of California, Santa Barbara CA 93106 http://www.mrl.ucsb.edu/~seshadri +++ seshadri@mrl.ucsb.edu

Thermal conductivity in 1D: Definitions

Mechanisms of thermal conductivity in materials

From R. E. Newnham, *Properties* of Materials: Anisotropy, Symmetry, Structure, Oxford University Press, 2005.

Thermal conductivity by electrons in "good" metals

From R. E. Newnham, *Properties* of Materials: Anisotropy, Symmetry, Structure, Oxford University Press, 2005.

= LT κ/σ

Lorentz number 2.44×10⁻⁸ W Ω K⁻²

This is the (empirical) Wiedemann-Franz law, a consequence of free electrons in metal.

Thermal conductivity across materials

Data from wikipedia

Temperature-dependence: 4 regimes

At low *T*, κ is determined by the physical size of the material, grain size and dislocation spacing.

In region III, κ (corrected for the thermal expansion) decreases as 1/T largely due to anharmonic phonon scattering, the umklapp processes.

At very high $T\kappa$ plateaus out and becomes independent of T.

D. R. Clarke, *Surface Coatings Technol.* **163 – 164** (2003) 67–74.

M. Winters and D. R. Clarke, *J. Am. Ceram. Soc.* **90** (2007) 533–540.

Some interesting materials: La₂Mo₂O₉

Some interesting materials: $La_2Mo_2O_9$ has a record low κ for an oxide

M. Winters and D. R. Clarke, *J. Am. Ceram. Soc.* **90** (2007) 533–540.

Some interesting materials: $La_2Mo_2O_9$ has a record low κ for an oxide

M. Winters and D. R. Clarke, *J. Am. Ceram. Soc.* **90** (2007) 533–540.

Some interesting materials: The "gold" standard

pubs.acs.org/JACS

Article

Clathrate $Ba_8Au_{16}P_{30}$: The "Gold Standard" for Lattice Thermal Conductivity

James Fulmer,[†] Oleg I. Lebedev,[§] Vladimir V. Roddatis,^{||} Derrick C. Kaseman,[‡] Sabyasachi Sen,[‡] Juli-Anna Dolyniuk,[†] Kathleen Lee,[†] Andrei V. Olenev,[†] and Kirill Kovnir^{*,†}

Fulmer, Lebedev, Roddatis, Kaseman, Sen, Dolyniuk, Lee, Olenev, Kovnir, *J. Am. Chem. Soc.* **135** (2013) 12313– 12323.

Some interesting materials: The "gold" standard

pubs.acs.org/JACS

Article

Clathrate $Ba_8Au_{16}P_{30}$: The "Gold Standard" for Lattice Thermal Conductivity

James Fulmer,[†] Oleg I. Lebedev,[§] Vladimir V. Roddatis,[∥] Derrick C. Kaseman,[‡] Sabyasachi Sen,[‡] Juli-Anna Dolyniuk,[†] Kathleen Lee,[†] Andrei V. Olenev,[†] and Kirill Kovnir^{*,†}

Fulmer, Lebedev, Roddatis, Kaseman, Sen, Dolyniuk, Lee, Olenev, Kovnir, *J. Am. Chem. Soc.* **135** (2013) 12313– 12323.

WHY?

Some interesting materials: The "gold" standard

pubs.acs.org/JACS

Article

Clathrate Ba₈Au₁₆P₃₀: The "Gold Standard" for Lattice Thermal Conductivity

James Fulmer,[†] Oleg I. Lebedev,[§] Vladimir V. Roddatis,^{||} Derrick C. Kaseman,[‡] Sabyasachi Sen,[‡] Juli-Anna Dolyniuk,[†] Kathleen Lee,[†] Andrei V. Olenev,[†] and Kirill Kovnir^{*,†}

Fulmer, Lebedev, Roddatis, Kaseman, Sen, Dolyniuk, Lee, Olenev, Kovnir, *J. Am. Chem. Soc.* **135** (2013) 12313– 12323.

WHY?

