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How do Solid Oxide Fuel Cells Work?
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SOFCs still face obstacles

* Electrodes must be porous to make up for poor
conductivity, reactions happen at triple phase

boundary
> * Electrodes must be chemically compatible at
electrode/electrolyte interface
1 Electrolyte
\ . * Electrodessinter at high temperature, ruin
e- e- m porosity

* Need matching CTE for mechanical durability

* Interconnect must be stable at high To |OW€F operating
temperature, as well oxidizing and reducing
environments temperature, need better

electrolyte




High-temperature Bi,O; (>730°C) has potential as new electrolyte, higher
conductivity than currently used YSZ electrolyte

O(-Bi203

730°C

* Naturally occurring mineral bismite » Defect fluorite structure with 25% of anion
 Complicated monoclinic structure sites vacant
e Exhibits no ionic conductivity * High ionic conductivity due to large

concentration of vacancies
 Bi3*in a fluorite lattice




Isovalent lanthanide-doping stabilizes the 0-Bi, 05 structure to lower
temperature (¥500°C)

< Rhombohedral
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» Larger cationic radii destabilizes cubic structure at lower temperatures (similar to Bi3*)

* %

Decreasing ionic radii

https://en.wikipedia.org/wiki/Periodic_table#/media/File:14LaAc_periodic_table_Ilb.jpg
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* Oxygen vacancies order along body diagonal, <111>, across
octahedral sites, and <110> next to Bi cations due to lone pair,
0 20 40 60 80 100 120 high polarizability

*Higher concentrations of dopant increasing aging effect

Boyapati, S., Wachsman, E.D., Jiang, N., “Effect of oxygen sublattice ordering on interstitial transport mechanism and conductivity activation energies in phase-stabilized cubic bismuth-oxides”,

Solid State lonics, 2001, 140, 149-160; Jiang, N., Wachsman, E.D., “Structural Stability and Conductivity of Phase-Stabilized Cubic Bismuth Oxides”, J. Am. Ceram. Soc., 1999, 82, 3057-3064



Vacancy ordering is accompanied by oxygen anion positional ordering in 32f

interstitial sites
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* In ordered structure oxygen ions have high occupancy of 32f interstitial sites along <111> direction

towards empty octahedral site (center of unit cell)

*Observed in TEM diffraction, neutron diffraction

Punn, R., Feteira, A.M., Sinclair, D.C., Greaves, C. “Enhanced Oxide lon conductivity in Stabilized 6-Bi,0;”, . Am. Chem. Soc., 2006, 128, 15386-15387




lon conduction occurs through empty octahedral site, limited by interstitial
occupancy and anion ordering
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Transport in Disordered Structure
(Gattow Model)

% 321 interstitial site
Vacant octahedral site

Transport in Ordered Structure
(Sillen Model)

‘ Occupied 8¢ site
‘ Partially occupied 8¢ site
O Vacant 8c site

* Disordered structure has more jump directions, 8c site is unstable, interstitials can only jump to octahedral
site
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b. Occupancy and positional ordering

a. Occupancy ordering

* Occupation of interstitial sites decreases activation energy

Boyapati, S., Wachsman, E.D., Jiang, N., “Effect of oxygen sublattice ordering on interstitial transport mechanism and conductivity activation energies in phase-

stabilized cubic bismuth-oxides”, Solid State lonics, 2001, 140, 149-160



Oxygen sublattice ordering is limited by polarizability of cations
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e Larger atomic radius & higher polarizability, Bi3*has lone pair, destabilizes <111> ordering of vacancies

*Dy has lowest occupancy of 32f sites, maintains disorder after annealing at 500°C

*Lower concentration of dopant cations allows for structure more similar to &-Bi, O, higher conductivities

Jiang, N., Wachsman, E.D., “Structural Stability and Conductivity of Phase-Stabilized Cubic Bismuth Oxides”, J. Am. Ceram. Soc., 1999, 82, 3057-3064
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T Use of two dopants allows for lower dopant
| concentration, higher conductivities
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Jung, D.W,, Duncan, K.L., Wachsman, E.D., “Effect of total dopant concentration and dopant ratio on conductivity of (DyO; 5),-(WO3),~(BiO; 5); ., Acta
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Conclusions

* 06-Bi,0; promises very high conductivities, need to stabilize the high temperature
structure below transformation temperature

e Structure experiences anion vacancy ordering at low temperatures, which can be limited
by a low concentration of large radii dopant

* Double-doping allows for reduced concentration of dopant necessary to stabilize cubic
structure

* Highest conductivity of ceramic electrolyte achieved with Dy 0s\W 04Big 5501 56



