Quantum cutting phosphors

Clayton Cozzan

Solid state lighting is very efficient

"The laser, we believe, is the next generation of lighting, even for general applications"

-Nakamura

395 TWh The 2030 Projected Electricity Savings from Solid-State Lighting equals....

Solid state lighting research and development map, DOE, May 2015

Phosphors are typically oxides or nitrides

Phosphors luminesce when excited by a given energy

Oxides and nitrides doped with optically active rare earth compounds

Optical properties depend on host structure and local environment ion

Prototypical phosphor: Y₃Al₅O₁₂ doped with Ce³⁺

George, Denault, Seshadri, Phosphors for solid state white lighting, *Annu. Rev. Mater. Res*, **43**, 2013

Phosphors are wavelength converters for LEDs and laser diodes

Stokes shift: wavelength conversion loss

Typical phosphors: convert a short λ photon to a longer λ photon

Quantum cutting/splitting phosphors: convert short λ photon into two longer λ photons

George, Denault, Seshadri, "Phosphors for solid state white lighting," *Annu. Rev. Mater. Res*, **43**, 2013.

$$h\nu_1 = h\nu_2 + h\nu_3$$
 energy absorbed energy emitted

E. Fred Schubert, *Light-Emitting Diodes*, Cambridge University Press, 2006

External quantum efficiency (EQE) describes performance

EQE is number of photons emitted by phosphor (s^{-1}) over number of photons absorbed (s^{-1})

$$EQE = IQE * \eta_{transfer} * \eta_{outcoupling}$$

Excitation wavelengths vacuum ultraviolet VUV (<200 nm); xenon discharge lamps

Normal phosphors (max): ~100% QC phosphors (max): ~200%

Fluorides are used for QC phosphors

Need bandgap > 3.0 eV

Excitation energy > 6 eV $(\lambda < 200 \text{ nm})$

Energy of phonons low to reduce multiphonon relaxations (oxides are high, show no emission)

Downside: unstable

Zhang, Huang, Recent progress in quantum cutting phosphors, *Prog. Mater Sci.*, **55** 2010

Fluorides are used for QC phosphors

High centroid energy (occurs for compounds with high EN of anions)

Small crystal field splitting (CFS); depends on anion coordination polyhedron

Cube and octhedral coordination produce large CFS

Zhang, Huang, Recent progress in quantum cutting phosphors, *Prog. Mater Sci.*, **55** 2010

QC phosphors rely on f electron transitions

Focus in on fluorides doped with Pr³⁺, Tm³⁺, Er³⁺, and Gd³⁺

For Gd³⁺, donor transfers stepwise to two acceptors via downconversion

Gd3+/Eu3+ pair, cascade emission

YF₃:Pr³⁺, Pnma

Structure: Cheetham, Norman, The Structures of Yttrium and Bismuth Trifluorides by Neutron Diffraction, *Acta Chem. Scand. A* **28** 1974

QC can happen via multiple pathways

Wegh, Donker, Oskam, Meijerink, Visible Quantum Cutting in LiGdF₄:Eu³⁺ through downconversion, *Science* **283** 1999

LiGdF₄:Eu³⁺ is one of the highest performing QC phosphors

Process:
Gd is excited by high-energy photon

Two step energy transfer to Eu3+

two visible photons emitted by Eu³⁺ (downconversion)

Li

Y

 $Li(Gd_{0.5}Y_{0.5})F_4$, I_4 /a (88)

Wegh, Donker, Oskam, Meijerink, Visible Quantum Cutting in LiGdF₄:Eu³⁺ through downconversion, *Science* **283** 1999

Na, Jeong, Chang, Kim, Woo, Lim, Mkhoyan, Jang, Facile synthesis of intense green light emitting LiGdY₄:Yb,Er-based upconversion bipyramidal nanocrystals and their polymer composites, *Nanoscale*, **6** 2014

Downconversion

Wegh, Donker, Oskam, Meijerink, Visible Quantum Cutting in LiGdF₄:Eu³⁺ through downconversion, *Science* **283** 1999