Topological protection of skyrmions in chiral magnetic materials

Joshua Bocarsly
MATRL 286G
5 May 2016

Timeline

- 1962: Tony Skyrme proposed a model of mesons and baryons as topologically protected solitons.
- 1964-1965: Dzyaloshinksii explained helical spin arrangements in solids
- 1989: Bogdanov and Yablonskii predicted that stable "skyrmions" could exist in helimagnetic materials
- 2009: Skyrmions first observed in MnSi by SANS by Mühlbauer, Böni, and coworkers (Science, 2009)
- 2010: Real-space observation of skyrmions in Fe_{0.5}Co_{0.5}Si using by Yu, Tokura, and coworkers (*Nature*, 2010)

SANS observation of skyrmions in MnSi

LTEM observation of skyrmions in Fe_{0.5}Co_{0.5}Si

Technological promise

Skyrmions have been observed in metals, semiconductors, and insulators across a wide temperature range (as high as 600 K for $\text{Co}_{x}\text{Zn}_{y}\text{Mn}_{z}$)

- Ultrahigh-density and low power magnetic storage (use skyrmions instead of magnetic domains as the bits)
- Novel applications based on skyrmion currents?
- Quantum computing?
- ????

"nanoskyrmions" as small as 1 nm in Fe on Ir (111)

Heinze, S., von Bergmann, K., Menzel, M., Brede, J., Kubetzka, A., Wiesendanger, R., ... Blügel, S. (2011). Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nature Physics, 7(9), 713–718.

What is topological protection?

What is topological protection?

- Two fields are topologically identical if you can transform one to the other by bending and stretching, but not tearing or gluing
- An object is topologically protected if it is topologically inequivalent to the uniform field.

What does topology have to do with solids?

If you can approximate some feature of a solid as a continuous surface, then you can use the tools of topology to analyze it.

Examples of surfaces:

- magnetization
- electric field in ferroelectric
- electrons in k-space

magnetization field in MnSi

S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, a Rosch, a Neubauer, et al., Skyrmion lattice in a chiral magnet., Science. 323 (2009) 915–919. doi:10.1126/science.1166767.

Thermodynamic stability vs Topological protection

Topological protection means there is an energy barrier to decomposition of a state

 The state may be metastable or stable

Topology allows you to make some predictions about stability without full knowledge of the free energy surface

Magnetic skyrmions

This term refers to a variety of topologically protected spin textures

hedgehog skyrmion

vortex skyrmion

Illustration by Karin Everschor-Sitte and Matthias Sitte

1-D skyrmions

In 1-D, skyrmions are made of pairs of domain walls of the same chirality.

This structures is topologically protected as long as the ends are fixed (*i.e.* the skyrmion embedded in a

H.-B. Braun, Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons, Adv. Phys. 61 (2012) 1–116. doi:10.1080/00018732.2012.663070.

Topological charge

Skyrmions behaves as quasi-particles, characterized by a "topological charge" $w = \pm 1$

Formally, this is the "winding number", the number of times a mapping from the surface to configuration space winds around the unit sphere.

The configuration of space of possible spin direction

Real-space spin structures with different winding numbers

H.-B. Braun, Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons, Adv. Phys. 61 (2012) 1–116. doi:10.1080/00018732.2012.663070.

Thermodynamic analysis of skyrmions

The energy of a cubic, noncentrosymmetric, isotropic magnet near its Curie temperature can be described as

$$w(\mathbf{M}) = A(\mathbf{\nabla}\mathbf{M})^2 - D\mathbf{M} \cdot (\mathbf{\nabla} \times \mathbf{M}) - \mathbf{M} \cdot \mathbf{H}$$

Thermodynamic analysis of skyrmions

The energy of a cubic, noncentrosymmetric, isotropic magnet near its Curie temperature can be described as

Thermodynamic analysis of skyrmions

Energy-minimizing arrangements:

helicoid

conical

skyrmions

Rößler, U. K., Leonov, A. A., & Bogdanov, A. N. (2011). Chiral Skyrmionic matter in non-centrosymmetric magnets. Journal of Physics: Conference Series, 303(1), 012105.

Materials candidates for skyrmions

While skyrmions are topologically protected, they are usually not **stable**. Skyrmion hosts should have:

- noncentrosymmetric (and especially chiral) space groups
- exchange energy on the same order as spin-orbit coupling (light elements)
- T_C in desired temperature range

An example of spacegroup hosting skyrmions:

Experimental observation of skyrmions

 $Co_8 Zn_8 Mn_4$ (P4₁32)

At the correct *H*, *T*, a close-packed lattice of skyrmions can be observed by LTEM

Tokunaga, Y., Yu, X. Z., White, J. S., Rønnow, H. M., Morikawa, D., Taguchi, Y., & Tokura, Y. (2015). A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nature Communications, 6(May), 7638.

Experimental observations of skyrmions

FeGe $(P2_13)$

Yu, X. Z., Kanazawa, N., Onose, Y., Kimoto, K., Zhang, W. Z., Ishiwata, S., ... Tokura, Y. (2011). Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nature Materials, 10(2), 106–109.

Known magnetic skyrmion hosts

Chiral solids

B20 alloys – MnSi, FeGe, etc. $P2_{1}3$ metals or semiconductors

Cu₂OSeO₃ $P2_{1}3$ insulator

β-Mn alloys $Co_xZn_yMn_z$ P4₁32

Asymmetric heterostructures

- Monotomic layer of Fe on Ir(111)
- IrlColPt films

Heinze et al., Nature Phys., 2011

References for more information

- U.K. Rößler, A.A. Leonov, A.N. Bogdanov, Chiral Skyrmionic matter in non-centrosymmetric magnets, J. Phys. Conf. Ser. 303 (2011) 012105. doi:10.1088/1742-6596/303/1/012105.
- N. Nagaosa, Y. Tokura, Topological properties and dynamics of magnetic skyrmions, Nat. Nanotechnol. 8 (2013) 899–911. doi:10.1038/nnano.2013.243.
- H.-B. Braun, Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons, Adv. Phys. 61 (2012) 1–116. doi:10.1080/00018732.2012.663070.