Characterization of the Magnetic and Structural Properties of Copper Carbodiimide, CuNCN, by Neutron Diffraction and First-Principles Evaluations of Its Spin Exchange Interactions

> Brian Barraza June 1, 2016

Characterization of the Magnetic and Structural Properties of Copper Carbodiimide, CuNCN, by Neutron Diffraction and First-Principles Evaluations of Its Spin Exchange Interactions

Xiaohui Liu and Richard Dronskowski*

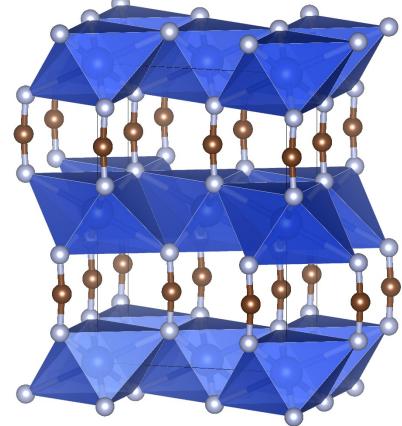
Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany

Reinhard K. Kremer and Martin Ahrens

Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

Changhoon Lee and Myung-Hwan Whangbo

Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204

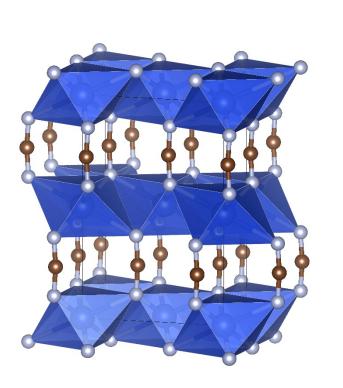

Received: January 24, 2008; Revised Manuscript Received: April 30, 2008

The crystal structure of copper carbodiimide, CuNCN, was determined from neutron diffraction data at room temperature and at 4 K, and the electrical resistivity, specific heat, and magnetic susceptibility measurements were carried out. The spin exchange interactions of CuNCN were evaluated by performing first-principles density functional theory electronic structure calculations. CuNCN is a semiconductor containing Jahn–Teller distorted CuN₆ octahedra around the divalent copper ions, and the material shows a very small and almost temperature-independent magnetic susceptibility. Our electronic structure calculations evidence that the spin exchange interactions of CuNCN are dominated by two antiferromagnetic spin exchange paths leading to a triangular lattice antiferromagnet within the *ab* plane. Because the coupling between the layers (along the *c* axis) is small, CuNCN may be regarded a two-dimensional S = 1/2 frustrated triangular Heisenberg quantum antiferromagnet.

Why CuNCN?

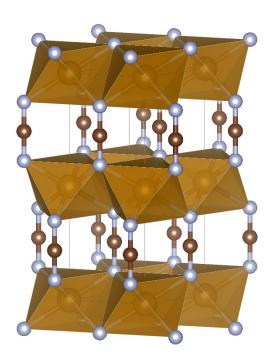
- Cu²⁺: [Ar] 3d⁹
 - Paramagnetic transitionmetal center
- NCN²⁻
 - Diamagnetic bidentate bridging ligand
- Magnetic Network Materials

- Nitrogen analogues of metal oxides
 - O²⁻ → NCN²⁻
 - Much more spacious
- N-C-N°
 - Small strain in angle allows for "wiggle room"
- Exhibit antiferromagnetic exchange interactions



Other NCN structures

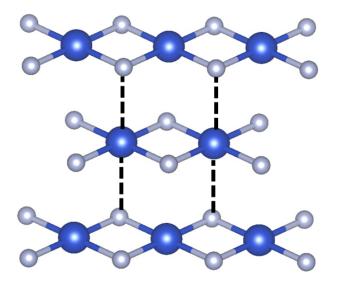
CuNCN : Cmcm


MnNCN : R3-*m*

Fe, Co and NiNCN : P6₃/mmc

Dronskowski, R. el al., *Inorg. Chem.* (2005) 44, (9) 3001-3003

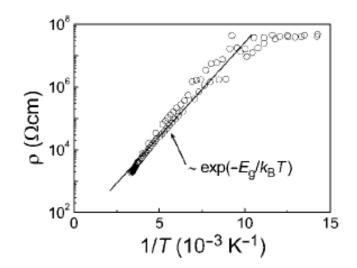



Dronskowski, R. el al., Chem. Eur. J. (2009) 15, (7) 1558-1561

Crystal Structure Determination

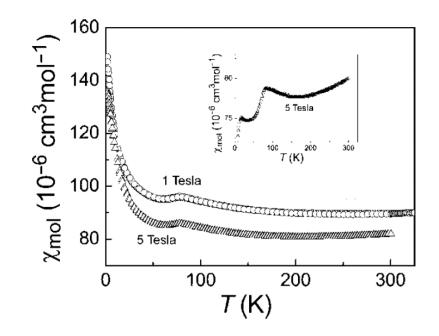
- Neutron Powder Diffraction at 4 and 293 K
 - At lower temp. unit of volume cell decreases
 - All bond angles and distances remain the same
 - NCN²⁻ angle is larger at lower temperatures, more linear

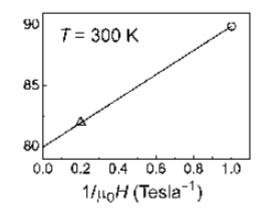
- Cu²⁺ ion
 - Coordinated to six nitrogen atoms
 - 4 short (2.0 Å) and 2 long (2.6 Å) Cu-N bonds
 - Jahn-Teller distorted structure
- Form corrugated sheets parallel to the ac plane



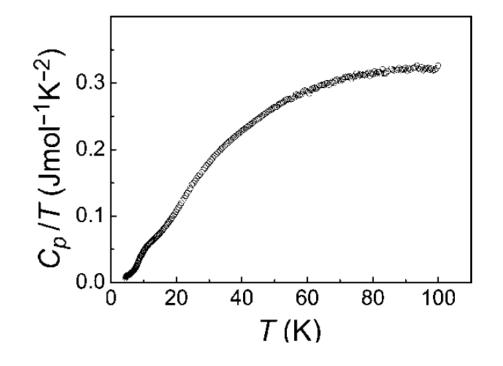
Electrical Resistivity

- Electrical resistivity of CuNCN was measured
 - <u>Room temperature</u>: semiconductor with a resistivity of about 1kΩcm
 - <u>100K</u> resistivity levels of at 100 M Ω cm.


6 orders of magnitude larger

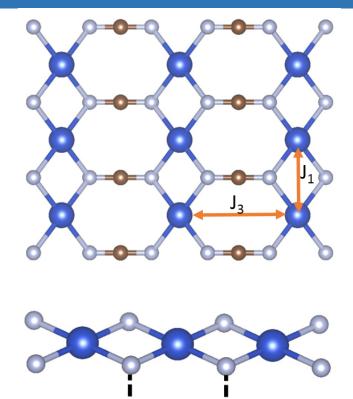


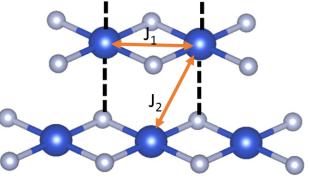
- Arrhenius plot shows an activation energy of the electrical resistivity
 - Fit of about 0.1 eV


Magnetic Susceptibility of CuNCN

- Magnetic properties determined using a SQUID magnetometer.
 - Magnetic fields of 0.1, 1 and 5 T
 - Temperature (T) range: 1.85 K < T < 320 K
- Magnetic Susceptibility
 - Almost temperature independent
 - Slightly field dependent
- Increasing field (H) at 300 K
 - Paramagnetic value of about 80 X 10⁶⁻ cm³/mol
- Below 50 K there is increase in susceptibility
 - Currie-Weiss contribution of $\chi = 6.1 \times 10^{-4} / (T-5K) \text{ cm}^3 \text{ Kmol}^{-1}$
- Honda-Owen plot (χ) vs. (1/H)
 - Shows a hyperbolic decrease in susceptibility
 - Ferromagnetic impurities (Fe, etc...)
 25ppm

- At 75 K and 0.1 T magnetic susceptibility measurements showed a broad maximum
- Heat capacity of CuNCN 4K-100K was taken
 - 0.2g Encapsulated in Duran glass under 1bar ⁴He gas to enable thermal coupling
- No evidence for a magnetic phase transition below 100 K
- Anomaly at 10 K shows no relation to magnetic susceptibility measurements.

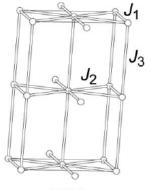



Spin Exchange Interactions

- Three spin exchange interactions
 - J₁, J₂, J₃
- This leads to four ordered spin states
 - FM, AF1, AF2, AF3
- Spin Hamiltonian used to determine energy differences

$$\hat{H} = -\sum_{i < j} J_{ij} \hat{S}_i \cdot \hat{S}_j$$

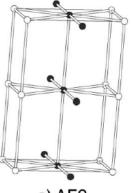
- J_{ij} = spin exchange parameter between spin states i and j
- Ŝ = spin angular momentum operator


Spin Exchange Interactions

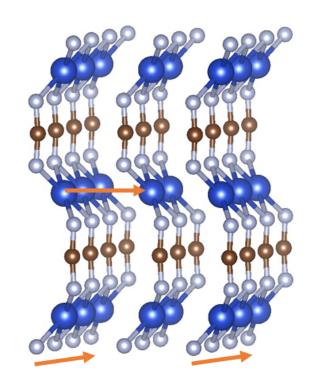
 The following expression can be used to describe the energies of the different spin states

> $E_{\rm FM} = (-4J_1 - 8J_2 - 4J_3)(N^2/4)$ $E_{\rm AF1} = (-4J_1 - 8J_2 + 4J_3)(N^2/4)$ $E_{\rm AF2} = (-4J_1 + 8J_2 - 4J_3)(N^2/4)$ $E_{\rm AF3} = (+4J_1 - 4J_3)(N^2/4)$

• N = unpaired spin (1)

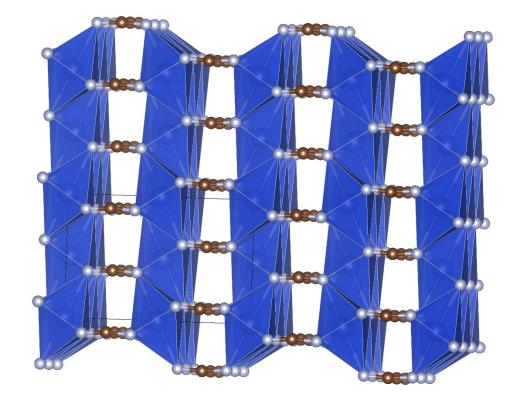

$$J_3 = (E_{AF1} - E_{FM})/(2N^2)$$
$$J_2 = (E_{AF2} - E_{FM})/(4N^2)$$
$$J_1 = (E_{AF3} - E_{FM})/(2N^2) - J_2$$

a) FM


c) AF2

d) AF3

Spin Exchange


- DFT calculations found that spin exchange is dominated by J_1 and J_2 interactions. J_3 interaction are negligible
 - Paths are observed within the ab plane, only.
 - Coupling between layers is small. Causes decoupling of layers
 - Creates a magnetism across the 2D plane
 - S= ½ frustrated Heisenberg quantum antiferromagnet (expected to have unusual quantum ground states).

U (eV)	FM	AF1	AF2	AF3
4.0 6.0	0.0 0.0	0.31 -1.42	-323 -457	-297 -423
<i>U</i> (eV)	J_1	J_2	J_3	
4.0	-67.8	-80.8	0.2	
6.0	-97.1	-114	-0.7	

Take Home Message

- CuNCN can be described as
 - Semiconductor at room temp
 - A magnetic insulator
 - Triangular lattice which leads to a highly correlated antiferromagnetic state.

