Oxide crystal structures: The basics

Ram Seshadri Materials Department and Department of Chemistry & Biochemistry Materials Research Laboratory, University of California, Santa Barbara CA 93106 USA seshadri@mrl.ucsb.edu

Originally created for the: ICMR mini-School at UCSB: Computational tools for functional oxide materials – An introduction for experimentalists

- 1. Brief description of oxide crystal structures (simple and complex)
 - a. Ionic radii and Pauling's rules
 - b. Electrostatic valence
 - c. Bond valence, and bond valence sums

Why do certain combinations of atoms take on specific structures?

I. D. Brown

A WOLEY-INTERSCHINCH PUBLICATION JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore

B. G. Hyde & S. Andersson

Software: ICSD + VESTA

K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, *J. Appl. Cryst.* **44** (2011) 1272–1276. [doi:10.1107/S0021889811038970]

Crystal structures of simple oxides [containing a single cation site]

Crystal structures of simple oxides [containing a single cation site]

N.B.: CoO is simple, Co_3O_4 is not. $ZnCo_2O_4$ is certainly not ! Co_3O_4 and $ZnCo_2O_4$ are complex oxides.

Graphs of connectivity in crystals: Atoms are nodes and edges (the lines that connect nodes) indicate short (near-neighbor) distances.

 CO_2 : The molecular structure is O=C=O. The graph is: Each C connected to 2 O, each O connected to a 1 C

OsO₄: The structure comprises isolated tetrahedra (molecular). The graph is below: Each Os connected to 4 O and each O to 1 Os

Crystal structures of simple oxides of monovalent ions: A_2O

Linear coordination is unusual. Found usually in Cu⁺ and Ag⁺.

Na₂O (anti-fluorite)

0

4-coordination for Na⁺ and 8- coordination for O^{2-} are unusual.

Crystal structures of simple oxides of divalent ions: AO

PbO (litharge), lone pairs

MgO (rock-salt)

Ubiquitous for AO oxides including transition metals (distorted for CuO and NbO).

Insulators, metals (TiO), magnetic, ...

 α -Al₂O₃ (corundum)

Also the structure of Cr_2O_3 and Fe_2O_3 .

 Ga_2O_3 does funny things.

 In_2O_3 is different (bixbyite).

Crystal structures of simple oxides of tetravalent ions: AO₂

TiO₂ (rutile)

TiO₂ also crystallizes as anatase and brookite.

SiO₂ takes on this structure, and can be quenched to it, (stishovite) under pressure.

CeO₂ (fluorite)

Also the structure of ThO₂, and of ZrO₂ and HfO₂ at elevated temperatures.

Ordered variants abound.

 $2H-TiS_2$

van der Waals gap (unlikely in oxides or fluorides, but occurs frequently in hydroxides)

This is the CdI₂ structure.

Crystal structures of an oxide with an octavalent ion: OsO₄

0

OsO₄

Shannon-Prewitt (ionic) radii

Radii assigned by systematically examining cationanion pairs in oxides, fluorides *etc*.

May not work for other kinds of compounds

Be sensitive to coordination number and spin state

Periodic table of the elements

Click on the element for tables of the Effective Ionic Radii

1	2	3	4	5	6	7	8	9	10	-11	12	13	14	15	16	17	18
H 1 1.008																	He 2 4.003
Li 3 6.941	Be 4 9.012											B 5 10.81	6 12.01	N 7 14.01	0 8 16.00	E 9 19.00	Ne 10 20.18
Na 11 22.99	Mg 12 24.30											Al 13 26.98	<u>Si</u> 14 28.09	P 15 30.97	<u>S</u> 16 32.07	CI 17 35.45	Ar 18 39.95
K 19 39.10	Ca 20 40.08	90 21 44.96	22 47.88	⊻ 23 50.94	Cr 24 52.00	Mn 25 54.94	Fe 26 55.85	<u>Co</u> 27 58.93	Ni 28 58.69	29 63.55	Zn 30 65.39	Ga 31 69.72	Ge 32 72.61	As 33 74.92	Se 34 78.96	Br 35 79.90	Kr 36 83.80
Rb 37 85.47	Sr 38 87.62	¥ 39 88.91	Zr 40 91.22	Nb 41 92.91	Mo 42 95.94	Tc 43 98.91	Ru 44 101.1	Rh 45 102.9	Pd 46 106.4	Ag 47 107.9	Cd 48 112.4	49 114.8	50 118.7	51 51 121.8	Te 52 127.6	53 126.9	Xe 54 131.3
<u>Cs</u> 55 132.9	Ba 56 137.3	La 57 138.9	Hf 72 178.5	<u>Ta</u> 73 180.9	W 74 183.8	Re 75 186.2	08 76 190.2	<u>lr</u> 77 192.2	<u>Pt</u> 78 195.1	Au 79 197.0	Hg 80 200.6	81 204.4	Pb 82 207.2	B3 209.0	Po 84 210.0	A1 85 210.0	Rn 86 222.0
Er 87 223.0	Ra 88 226.0	Ac 89 227.0															
		<u>Ce</u> 58 140.1	Pr 59 140.9	Nd 60 144.2	Pm 61 144.9	52 150.4	Eu 63 152.0	Gd 64 157.2	158.9	Dy 66 162.5	Ho 67 164.9	68 167.3	Tm 69 168.9	<u>Yb</u> 70 173.0	Lu 71 175.0		
		Th 90 232.0	Pa 91 231.0	92 238.0	Np 93 237.0	Pu 94 239.1	Am 95 243.1	<u>Cm</u> 96 247.1	Bk 97 247.1	<u>Cí</u> 98 252.1	Es 99 252.1	Em 100 257.1	Md 101 256.1	No 102 259.1	103 260.1		

Mn

Charge C.N. Spin I.R./Å 4 +2 h 0.66 5 h 0.75 6 0.67 6 h 0.830 7 h 0.90 8 0.96 +3 5 0.58 6 0.58 6 h 0.645 +4 4 0.39 6 0.530 +5 4 0.33 +6 4 0.255 +7 4 0.25 6 0.46

www.mrl.ucsb.edu/~seshadri/Periodic/index.html

Ionic radii and Pauling's first rule (the radius ratio rule)

In brief: The cation-anion distance is the sum of cation and anion radii, and the number of anions around a cation (the coordination number) is a function of the radius ratio. Exemplified by AO_2 compounds below. MRR is the mimimum radius ratio.

Compound	r_C (Å)	$r_C + r_O$ (Å)	r_C/r_O	Coordination	MRR
CO_2	-0.19(?)	1.16 (exp.)	?	2	
SiO_2	0.26	1.61	0.19	4	0.225
TiO_2	0.605	1.955	0.45	6	0.414
CeO_2	0.97	2.32	0.72	8	0.732

L. Pauling, The Nature of the Chemical Bond, 3rd Edn., Cornell University Press, Ithaca 1960

In brief: Charges going out from cations should balance anions and vice-versa

Electrostatic valence and bond valence

Pauling, and later Brown and Shannon, noted that the Pauling bond strength (the electrostatic valence) correlates very well with distance for many oxides: Short bonds (distances) correpond to strong bonds and *vice-versa*

I. D. Brown and R. D. Shannon, Empirical bond-strength-bond-length curves for oxides, *Acta Cryst.* **A29** (1973) 266–281

The modern bond valence relationship:

$$s = \exp\left(\frac{R_0 - R}{B}\right)$$

Where s is the strength of the bond, R is the cation to anion distance, and R_o and $B \approx 0.37$ Å are parametrized for the specific ion pair.

When all s are calculated:
$$\sum_{CN} s = valence of the ion$$

This means R = 2.20 Å. experiment: 2.22 Å

I. D. Brown and R. D. Shannon, Empirical bond-strength-bond-length curves for oxides, *Acta* Cryst. **A29** (1973) 266–281.

Electrostatic valence and bond valence: Parameters for Mn

Mn 2	0 -2	1.790	0.37	а
Mn 2	0 -2	1.765	0.37	j
Mn 2	S –2	2.22	0.37	e
Mn 2	F -1	1.698	0.37	а
Mn 2	Cl –1	2.133	0.37	а
Mn 2	Br -1	2.34	0.37	е
Mn 2	I -2	2.52	0.37	е
Mn 2	N –3	1.849	0.37	i
Mn 2	N -3	1.65	0.35	e
Mn 3	0 -2	1.760	0.37	а
Mn 3	0 -2	1.732	0.37	i
Mn 3	F -1	1.66	0.37	b
Mn 3	Cl –1	2.14	0.37	b
Mn 3	N –3	1.837	0.37	j
Mn 4	0 -2	1.753	0.37	a
Mn 4	0 -2	1.750	0.37	j
Mn 4	F -1	1.71	0.37	b
Mn 4	F -1	1.63	0.37	е
Mn 4	Cl –1	2.13	0.37	b
Mn 4	N -3	1.822	0.37	j
Mn 6	0 -2	1.79	0.37	e
Mn 7	0 -2	1.827	0.37	е
Mn 7	0 -2	1.79	0.37	b
Mn 7	F -1	1.72	0.37	b
Mn 7	Cl –1	2.17	0.37	b

bvsparm.cif

I. D. Brown and R. D. Shannon, Empirical bond-strength-bond-length curves for oxides, *Acta Cryst.* **A29** (1973) 266–281.

The major ternary structural families (Muller and Roy, page 3, redrawn and modified)

The ABO₃ structure-sorting field (from Muller and Roy)

The superscripted roman numerals indicate coordination number.

BaZrO₃ +2/12

Ba

O

LaMnO₃Pnma (Jahn-Teller distorted)

Note that the space group *Pnma* (#62) can be written in a variety of ways.

+4/6

Zr

This is the most common perovskite space group.

In the next so many structures, BO₆-polyhedra are depicted.

Ordered double perovskites (elpasolites)

Ba₂MgWO₆

Rock-salt like ordering of dissimilar octahedra. Space group same as rock-salt: *Fm*–3*m*

Smaller A-ions associated with tilting as in simple perovskites.

The double perovskite field: Charge and radius

Hexagonal ABO₃ structures

Ferroelectric YMnO₃ ("YAlO₃")

Unusual 5-fold coordination (trigonal bibyramid) of MnO₅

LiNbO₃ (ferroelectric R₃c)

UC SANTA BARBARA science & engineering

Ordered rutiles (the trirutile)

$CoTa_2O_6: 3 \times TiO_2 = Ti_3O_6; 3 \times Ti^{4+} = Co^{2+} + 2 \times Ta^{5+}$

The A_2BO_4 structure-sorting field (from Muller and Roy)

The superscripted roman numerals indicate coordination number.

Spinel AB₂O₄

Ubiquitous structure when ions have similar sizes, around 0.6 Å. A is tetrahedrally coordinated, and B octahedral (actually with a slight trigonal distortion).

In general, lower oxidation states and smaller bandwidths than in perovskites.

High single-ion anisotropy

LiCoO₂ (ordered rock-salt)

111-ordered with alternating octahedral LiO₆ and CoO₆ stacking

3R–CuFeO₂ (delafossite)

BO₂ (CdI₂) slabs separated by twocoordinate atoms, usually Cu⁺ and Ag⁺. Also unusually, Pd¹⁺ and Pt¹⁺.

A₂B₂O₇ pyrochlore

$Y_{2}Ti_{2}O_{7} = Y_{2}Ti_{2}O_{6}O$

6+2-coordinate A atoms and 6-coordinate B atoms.

Separately, just connecting A or just connecting B yields two interpenetrating pyrochlore lattices of corner-connected tetrahedra.

BARA

В

В

Ο

 \bigcirc

0

А

А

O'

