Midterm from last year

Ram Seshadri (seshadri@mrl.ucsb.edu) Date: February 2, 2014

- 1. Why is it that binary compounds tend to be easier to prepare as amorphous solids than elemental compounds? What about ternaries and quaternaries? Brief answer please. [3+2]
- 2. Illustrate the 4_1 , 4_2 , and 4_3 symmetry operations with sketches. How are 4_1 and 4_3 related? [3+2]
- Sketch 2D objects that display the following symmetries and label the rotation axes and mirrors: (i) 4mm (ii) 2'm'm. [3+3]
- 4. Sketch the zinc-blende crystal structure in sections. How is it related to the (i) diamond and (ii) *fcc*? [3+2+2]
- 5. BaO forms the rock salt structure. Sketch the bond valence net for BaO. Use bond valence sums to determine the lattice parameter, and compare with the experimental value of a = 5.517 Å. Remember that the bond valence of a single bond is $s = \exp((R_0 R)/B)$. The value of R_0 for the Ba²⁺/O²⁻ pair is 2.285 Å and B = 0.37 Å. [2+3]
- 6. The crystal structure of Ga is unusually complex. This is one form.

Space Group = Cmca (No. 64). a = 4.5230 Å, b = 7.6610 Å, and c = 4.5240 Å.

Atom	Wyckoff Symbol	x	y	z
Ga	8 <i>f</i>	0.0000	0.1549	0.0810

(a) What is the nature of the centering in the cell?		2
(b) What sort of a crystal system does this structure belo	ng to?	2
(c) What do the c and the a in the name of the space group c	oup indicate. No need to sketch.	2
(d) How many atoms in the unit cell?		1