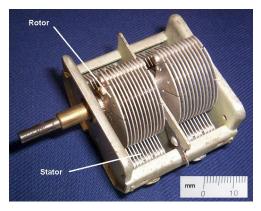
DIELECTRIC TUNABILITY IN PEROVSKITE OXIDES

Adam Kajdos


MATRL 286G

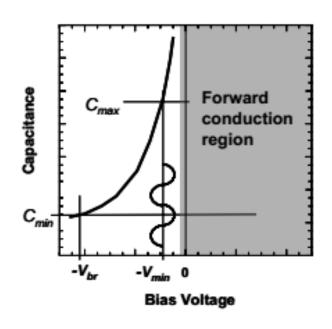
June 4th, 2014

Motivation: Variable Capacitors

- Several ways to vary capacitance:
 - mechanically (e.g. rotary, vacuum)
 - electrically (e.g. diode, ferroelectric)
- Important for wireless communications and radar systems

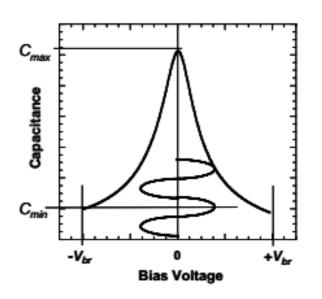
$$C = \varepsilon_0 \frac{\varepsilon_r A}{d}$$

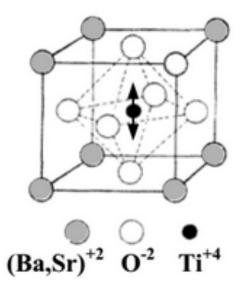
http://en.wikipedia.org/wiki/File:Variable Capacitor.jpg



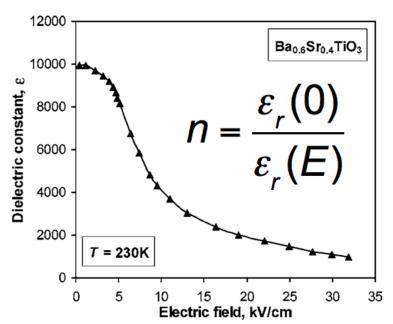
Variable capacitor diodes

 p-n, Schottky, or MOS diode operated in reverse-bias regime


$$d \propto (V_{bi} - V)^{1/2}$$


- vary capacitance by changing charge depletion region width
- not suitable for largeamplitude signals at zero DC bias

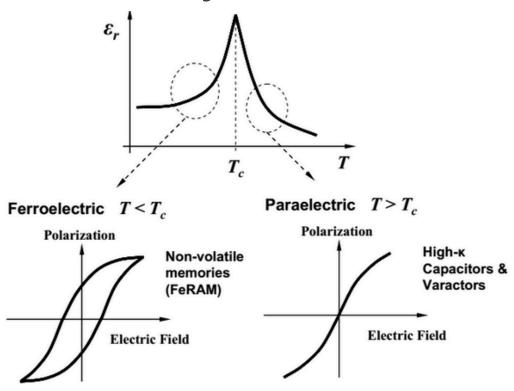
Ferroelectric capacitors


- ferroelectric perovskites (e.g. Ba_xSr_{1-x}TiO₃) in their paraelectric phase
- vary capacitance by changing the relative permittivity ε_r

- no forward conduction region
- lower cost of processing

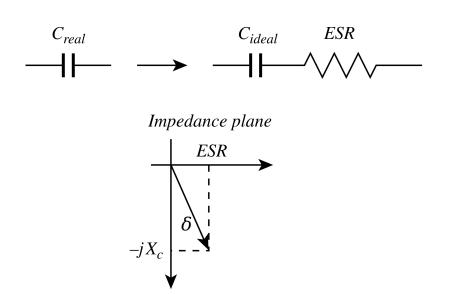
Dielectric tunability

- the extent to which the relative permittivity is suppressed by an electric field
- scales with zero-field permittivity ε_r(0)
- high tunability usually results in higher dielectric loss


at low fields:

$$n \propto \varepsilon_r(0)^3$$

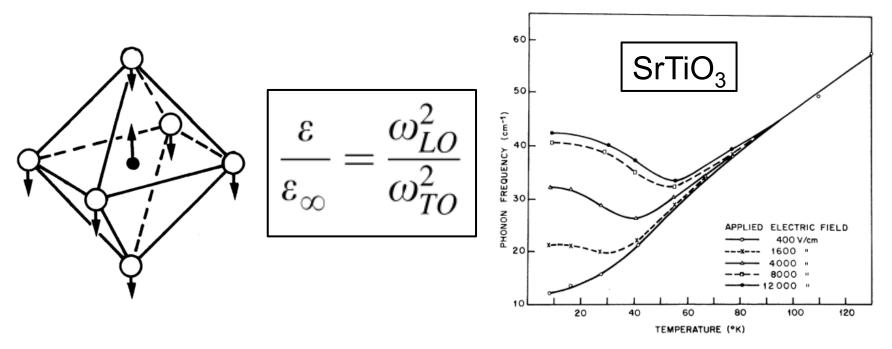
at high fields:


$$n \propto \varepsilon_r(0)$$

Dielectric tunability

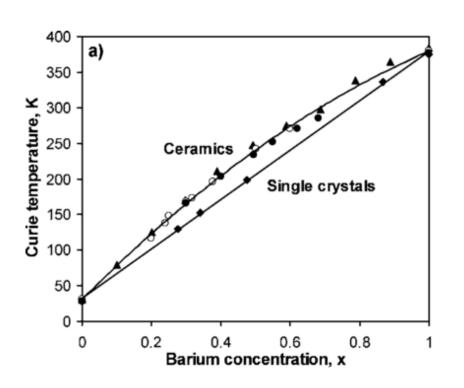
- ϵ_r is more tunable in the ferroelectric phase than in paraelectric phase near the phase transition
- less dielectric loss in the paraelectric phase

Dielectric loss



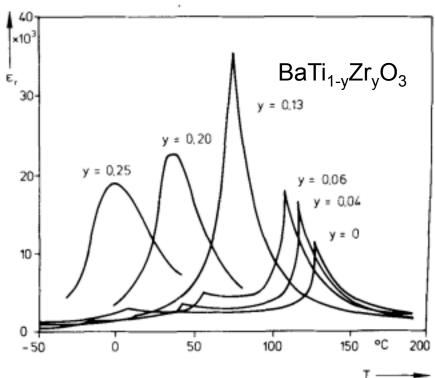
http://en.wikipedia.org/wiki/File:Loss_tangent_phasors_1.svg

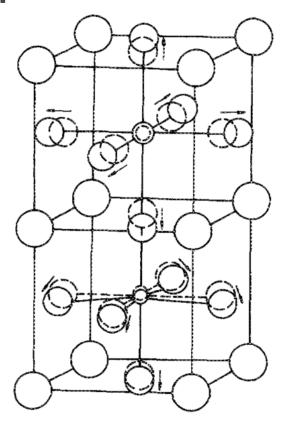
- dissipation of electrical energy resulting in deviation from ideal capacitor behavior
- quantified as loss tangent tanδ
 or Q = 1/tanδ

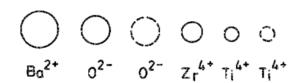

$$tan\delta \propto \epsilon^n = -1 \Rightarrow \text{ DC leakage, Quasi-Debye} \\ n = 1 \Rightarrow \text{ charged defects} \\ n = 1.5 \Rightarrow \text{ intrinsic phonon scattering} \\ n = 2.5-4 \Rightarrow \text{ polar regions}$$

Dielectric tunability in the paraelectric phase

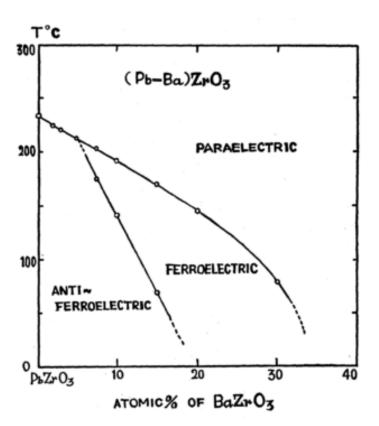
- ω_{TO} approaches zero at ferroelectric T_C
- applying electric field hardens the phonon mode (increases ω_{TO})
- permittivity varies with tuning of phonon mode
- X. Xi, H. Li, W. Si, A. Sirenko, I.A. Akimov, J.R. Fox, A.R. Clark, and J. Hao "Oxide thin films for tunable microwave devices," *J. of Electroceramics 4:2/3*, pp. 393–405, 2000.
- J. Worlock and P. Fleury, "Electric Field Dependence of Optical-Phonon Frequencies," Phys. Rev. Lett., vol. 19, no. 20, 1967.

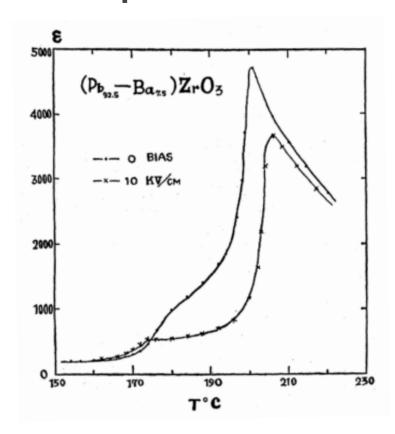

Phase transition and composition


- T_C of Ba_xSr_{1-x}TiO₃ varies between T_C of each end member
- substitution on A-sites affects oxygen packing and phonon mode damping
- A. Tagantsev and V. Sherman, "Ferroelectric materials for microwave tunable applications," Journal of Electroceramics, vol. 11, pp. 5–66, 2003.
 - J. N. Lin and T. B. Wu, "Effects of isovalent substitutions on lattice softening and transition character of BaTiO3 solid solutions," *J. Appl. Phys.*, vol. 68, no. 3, p. 985, 1990.


Phase transition and composition

 coexistence of multiple transitions over a narrow temperature range

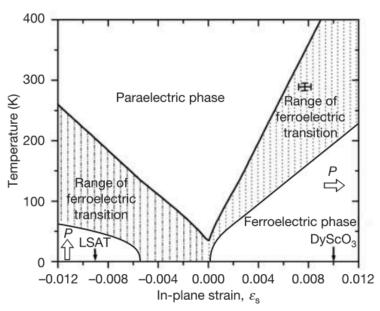


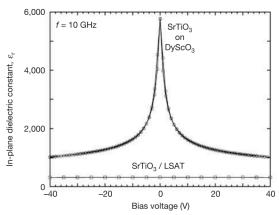


D. Hennings, A. Schnell, and G. Simon, "Diffuse Ferroelectric Phase Transitions in Ba (Ti1-yZry) O3 Ceramics," J. of Amer. Ceram. Soc. November, pp. 539–544, 1982.

J. N. Lin and T. B. Wu, "Effects of isovalent substitutions on lattice softening and transition character of BaTiO3 solid solutions," J. Appl. Phys., vol. 68, no. 3, p. 985, 1990.

Phase transition and composition

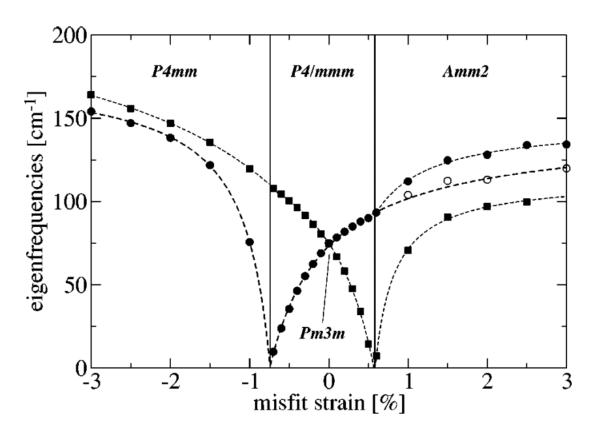




 tunable ferroelectric phase in a solid solution of antiferroelectric PbZrO₃ and paraelectric BaZrO

Phase transition and epitaxial strain

- T_C of SrTiO₃ can be brought close to room temperature with appropriate strain
- polarization dependent on strain sense



J. Haeni, P. Irvin, W. Chang, R. Uecker, and P. Reiche, "Room-temperature ferroelectricity in strained SrTiO3," *Nature*, vol. 430, 12 August, pp. 583–586, 2004.

N. Pertsey, A. Tagantsey, and N. Setter, "Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films," *Phys. Rev. B*, vol. 61, no. 2, pp. 1–5, 2000.

Phase transition and epitaxial strain

- strain modifies phonon modes of different orientation depending on sense
- J. Haeni, P. Irvin, W. Chang, R. Uecker, and P. Reiche, "Room-temperature ferroelectricity in strained SrTiO3," Nature, vol. 430, 12 August, pp. 583–586, 2004.
 - N. Pertsev, A. Tagantsev, and N. Setter, "Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films," Phys. Rev. B, vol. 61, no. 2, pp. 1–5, 2000.
- A. Antons, J. Neaton, K. Rabe, and D. Vanderbilt, "Tunability of the dielectric response of epitaxially strained SrTiO3 from first principles," *Phys. Rev. B*, vol. 71, no. 2, p. 024102, Jan. 2005.

Summary

- the permittivity of ferroelectric perovskite oxides is highly electric-field-tunable in the ferroelectric phase or paraelectric phase near T_C
- tunability in the paraelectric phase arises due to the electric-field dependence of ω_{TO}
- the temperature range of field-dependent permittivity can be adjusted with both chemical substitution and strain

Questions?