

White light

•White light does not exist as a spectral color

•Polychromatic light, *e.g.*, white light, can be created by mixing colors

•The mixed color produced depends on the ratio of the source color

3-LED solution What is holding this back? Needs 3 power supplies Expensive LED intensities need to be readjusted for temperature changes and burning time

Some applications of solid state lighting						
Citick For In	CENTRE CE		CONSTRUCTION		gThe Chanel Building in Osaka (Peter Marino Architect).LED lamps for indoor cultivation90% Less Heat 50,000 Hour Rated LEDs Made in USA No Heat Signature Cut Your Electricity Bill	
	Add To Cart				High Times Magazine	
					UC SANTA BARBA science & engineeri	RA ng

The canonical material: $Y_3AI_5O_{12}$:Ce³⁺ (Blasse)

JC SANTA BARBARA cience & engineering

Understanding Ce³⁺ in YAG:Ce³⁺: Findings

YAG unit cell expands slightly with increasing amounts of Ce (about a 300 ppm increase from x = 0 to x = 0.06).

Ce K-edge XANES and ²⁷Al NMR results show that all the Ce is reduced to Ce³⁺. Ce K-edge EXAFS reveals a 3% expansion in Ce-O bond distance compared to the average Y-O distance, that relaxes by the 5th coordination shell (3.7 Å). RMC/total neutron scattering simulations in agreement.

Analysis of ADPs and calculation of Θ_D confirms that the YAG lattice is very rigid, with few accessible phonons available at LED operating temperatures.

²⁷Al and ⁸⁹Y NMR experiments also show that the unpaired 4*f* electron in Ce³⁺ causes a displacement in the NMR signal of nearby nuclei, as well as a greatly shortened T_1 relaxation time of nearby nuclei.

EPR spectra of the YAG:Ce phosphor show small satellite signals around the main absorption signal, corresponding to Y-Al(oct.) antisite defects in YAG:Ce of around 2 mol % of octahedral Al sites.

Other research: Efficient nanoscale-YAG:Ce³⁺

The problem: Solution-prepared YAG:Ce³⁺ nanoparticles (\approx 30 nm) tend to have significantly suppressed quantum yields. **The solution:** Wrap the nanoparticles in mesoporous SiO₂, anneal, and then dissolve the wrapping.

