Li-ion Batteries: Electric Cars

Amy L. Prieto CSU

<u>Tesla Roadster</u> 0-60 MPH in 3.9 seconds "244 miles" on a single charge 6,831 Li-ion cells = \$36,000 replacement cost

Intercalation Chemistry

Limitation to Charging/Discharging Rates:

- diffusion of Li⁺ into electrodes
- diffusion of Li⁺ between electrodes

The problem of diffusion *between* the two electrodes has yet to be solved

Tarascon, J.M. *et al. Nature*, **2001**, *414*, 359 Li, N., Martin, C.R., Scrosati, B. *J. Power Sources* **2001**, *97-98*, 240

Common Battery Architectures

Tarascon, J.M., Armand, M. Nature 2001, 414, 359

Hand Made Batteries

How to Make a 3D Battery

 $Power Density \propto \frac{Voltage \times Lithium \ ion \ conductivity \times Surface \ area}{Lithium \ ion \ transport \ length}$

- High surface area electrodes
- Short diffusion lengths between electrodes
 - 1. Shape
 - 2. Fabrication methods (cathode/electrolyte/anode)
 - 3. How are you going to make electrical contact to each electrode?
 - 4. How will you prevent shorting?

Three Dimensional Battery Architectures

Rolison and Long, Chemical Reviews, 2004, 104, 4467

Three Dimensional Battery Architectures

Stein, A. et al. Adv. Mater. 2006, 18, 1750

Long, J. and Rolison, D. Acc. Chem. Res., 2007, 40, 854

Cu₂Sb (Anode)

Theoretical Performance for a 3D Foam Architecture

Gravimetric power density is competitive with ultracapacitors

Theoretical Performance for a 3D Foam Architecture

For applications where volume is the most important factor, the proposed 3D battery is an exciting option

The Goals of the Proposed 3D Battery

Power Density $\propto \frac{Voltage \times Lithium ion conductivity \times Surface area}{Voltage \times Lithium ion conductivity \times Surface area}$

Lithium ion transport length

Battery Performance

- Very high power density: up to 1000x improvement
- Smaller battery size: $\approx 2/3$ the size for same energy density
- Long life: Greater than 5000 cycles
- Safety: No liquid electrolyte, no hydrofluoric acid production

Battery Manufacturing Process

- Traditional electroplating
- Highly repeatable & scalable
- Competitive Cost:
 - Current projection is ≈ \$348/kWh
 - Industry leaders are currently ≈ \$500-1000/kWh

Increasing the Electrochemical Window

 $2[Cu_2Cit_2H_1]^{3-} + 2[SbCitH_1]^{-} + 4H_3O^{+} + 14e^{-} \rightarrow 2Cu_2Sb + 6Cit^{3-} + 4H_2O$

Mosby, J., Prieto A.L J. Am. Chem. Soc. 2008, 130, 10656

Direct Deposition of Crystalline Cu₂Sb

Direct deposition of crystalline, stoichiometric films from aqueous solution at room temperature

Conformal Deposition onto High Surface Area Structures

Short deposition times (2 minutes) result in a thin, conformal coating of Cu_2Sb on high surface area Cu foam.

Cycling Performance of Thin Cu₂Sb

- Exhibits same charge and discharge plateaus as thin film Cu₂Sb
- Great rate performance
 - 100 mAh g⁻¹ at 10C (1mA cm⁻²)
 - Only 1% capacity loss at 1C
- No binders necessary

"Long" Term Cycling Studies

"Long" Term Cycling Studies

Foam 5-stack versus Commercial Batteries

High surface area anode exhibits significantly enhanced cycle life versus commercially available graphite anodes at 2C charge and discharge rates

Electrolyte: Glycidal Methacrylate

Reductive radical polymerization Analogous to PEO (industry standard) Self-limiting polymerization Amenable to salt doping

Potentiocycling Polymerization

Current decreases with increasing cycles, consistent with self-limiting behavior

Linear Sweep Voltammetry: Thin Film Studies

Polymer modified Au is electrically insulating... Next step is determining film thickness

GYA: Doping with LiClO₄ in PC

Solid State Impedance Spectroscopy: pGYM on Au

Undoped polymer films are good dielectrics

Solid State Impedance Spectroscopy: pGYM:LiClO₄ on Au

Doped polymer films are ionically conductive

Integrating the Anode and Polymer Electrolyte

Good coverage on Cu₂Sb films

GYM on Cu₂Sb

Doped polymer films on Cu₂Sb are ionically conductive

GYA on Cu₂Sb

Optimized Electrochemical Polymerizations

Polymer electrolytes have to be electrically insulating, but ionically conductive

Quick Ways to Test Quality

Redox shutoff experiments can detect defects the size of small molecules, which enable us to: 1) know the defect is there and 2) fill it in

Quick Ways to Test Quality

Redox shutoff experiments can detect defects the size of small molecules, which enable us to: 1) know the defect is there and 2) fill it in

Near Ideal Slurry Chemistry

Good wetting of slurry to electrolyte

Future Work

Electrolyte:

A library of monomers have been electropolymerized, newest candidates show good ionic conductivity

Cathode

We have drop-casted particles of common cathode materials suspended in binder into our architecture.

Anode:

Cu₂Sb has been electrodeposited with good crystallinity and conformal coverage

Proposed Architecture

- High surface area
- Small foot print
- Short lithium ion diffusion

Anode

Electrodeposit anode material in AAO

Electrolyte

Electropolymerize/ self assemble solid electrolyte

Cathode Solution synthesis of nanoparticles of cathode materials

Porous Anodic Alumina Templates

Electrodeposition provides control over the composition, crystallinity, and morphology of the nanowires

Pulsed Deposition of Cu₂Sb Nanowires

Bottom

Cross Section

High pore-filling and uniform length

Uniformity Over Long Length Scales

Cycling in Solution

μm

Uniform growth & high density

Conformal Coating of Nanowires

Polymer electrolyte exhibits good adhesion onto Cu₂Sb nanowires

Conclusions and Future Work

Electrolyte:

GYA has been electropolymerized, and shows good ionic conductivity

We have coated templates with LiCoO₂ and LiMnO₂ synthesized using sol-gel methods

Anode:

Cu₂Sb nanowires have been electrodeposited with good crystallinity, high pore filling and uniform wire growth

Acknowledgements

Dan Bates Sarah Fredrick Josh Garrett (ME) Everett Jackson Brandon Kelly (ME) Daniel Shissler Laura Wally Garrett Wheeler Ryan Whitcomb

Dr. Tim Arthur Rebecca Bayer Nicole Forseth Dr. Derek Johnson Jacob Kershman Dr. Mary Martucci Dr. James Mosby Dr. Jennifer Noblitt Dr. Nick Norberg Dr. Matthew Rawls Dr. Shannon Riha Aaron Wolfe

Prof. Mike Elliott, Prof. Bruce Parkinson Dr. Chris Rithner, Dr. Pat McCurdy, Dr. Sandeep Kohli

