Transparent Conductors: Part I

Prof. Tom Mason Northwestern University Materials Science & Engineering

An Introduction to TCOs

Transparency (> 80% through visible spectrum for typical 1 μm thin film)

Conductivity (> 10³ S/cm)

- Some History and Applications
- Basic requirements for TCOs
- Role of Crystal Structure
- Phase Diagrams
- Bulk Experimental Methods:
 - Synthesis
 - Characterization
- Defect Chemistry

TCO History and Applications

The First Transparent TCO

F. Streintz, Ann. Phys. (Leipzig) 9, 854 (1902)

The First Thin Film TCO

thermal oxidation of sputtered Cd films on glass $\sigma = 870$ S/cm (106 nm thick) with orange/gold color

Fig. 3.

K. Bädeker, Ann. Phys. (Liepzig) 22, 749 (1907)

Mid-20th Century Developments

- 1930s-1940s: conductive SnO₂ film patents (various glass companies)
- 1951: first ITO patent (Corning)→ Sn-doped In₂O₃
- 1959: key dissertation on ZnO properties
- 1971: ZnO varistor and TCO film patents (Japan)

SnO₂-based windshield de-icer

Early TCO Science: In-doped ZnO

Single crystal data: E. Scharowsky, A. Physik, 135, 318 (1953) R. Arneth, PhD thesis, U. Erlangen (1959)

(taken from: G. Heiland, E. Mollwo and F. Stockmann, in Solid State Physics, Vol. 8, ed. By F. Seitz and D. Turnbull, 1959)

TCO Development (1970-2000)

Source: *T. Minami, MRS Bulletin, August, 2000*

-data for pure and doped host oxides.

Year

Why the Surge of Interest?

- Novel complex oxide/solid solution TCOs discovered in the 1990s
- Discovery of p-type TCO materials since the late 1990s
- Development of amorphous n-type TCOs since 2004
- Large area applications (organic LEDs, solar cells) require ITO-alternatives (chemical, electrical, cost issues)
- Development of Transparent Oxide Semiconductors (oxide-based thin film transistors-TTFTs)

A Wide Array of TCO Applications

- Low-emissivity windows
- Transparent front electrodes for flat-panel displays
- Transparent top electrodes for photovoltaic cells

- R. Gordon, MRS Bulletin, August 2000.

- Defrosting windows (freezers, cockpits)
- Electrochromic mirrors and windows
- Oven window coatings
- Static charge dissipation coatings
- Touch-panel controls
- Electromagnetic shielding
- Invisible security circuits
- Organic light-emitting diodes

Large-Area Applications

- High electrical conductivity (>1000 S/cm)
- High optical transparency in visible region (>80%)
- Industry standards: ITO, SnO₂

Basic TCO Requirements

Basic TCO Requirements

- Parent oxide with relatively wide band gap
- Interband transitions > 3.1 eV (cations with filled d-shells)
- Highly dispersed conduction (or valence) band (high mobility)
- Ability to donor- or acceptor-dope to ~10²¹/cm³

I. Hamberg and C. G. Grandqvist, J. Appl. Phys., 60, R123 (1986).

TCO-Active Species: d¹⁰ Cations

Typical Parameters:

- Large electron populations in the 10²⁰ to 10²¹ cm⁻³ range (highly degenerate)
- High electron mobilites in the 30-70 cm²/V-s range
- Large conductivities (in excess of 1000 S/cm)
- Low absorption in the visible (α <10⁴ cm⁻¹)
 - 100nm film 90% transparent in the visible
 - 500nm (0.5 μ m) film 60% transparent in the visible

Role of Crystal Structure

Shannon's n-type TCO Maxim

"...continuous edge-sharing of Cd²⁺, In³⁺ and Sn⁴⁺ octahedra is a necessary criterion for the formation of an n-type transparent conductor."

-R. D. Shannon et al., J. Phys. Chem. Solids, 38, 877 (1977).

Octahedral Cation TCO Family

<u>CdO</u>

rocksalt structure

SnO₂

rutile structure

Bixbyite: a Fluorite-Derivative

- Double ZrO₂ to Zr₂O₄
- If In-oxide were a fluorite, it would be In₂O₄
- But In³⁺ rather than In⁴⁺
- For charge balance, remove ¼ of O-ions
- Get In_2O_3

Octahedral Cation TCO Family

bixbyite structure

- Edge-shared octahedra
- The octahedra are distorted (hints at why amorphous TCOs also conduct)
- Can be readily doped (e.g., Sn⁴⁺) and codoped (Zn²⁺/Sn⁴⁺ and Cd²⁺/Sn⁴⁺)
- The basis of a rich family of complex oxide solid solutions

Octahedral Cation TCO Family

spinel structure

- Spinel = $MgAl_2O_4$
- 1/2 octahedral interstices occupied: octahedral sites
- 1/8 of tetrahedral interstices occupied: tetrahedral sites
- Arrays of edge-shared cation octahedra
- Spinels are well-known for exhibiting extended solid solutions

The Importance of Phase Diagrams

The Cd-In-Sn-O (CITO) System

Shannon's n-type TCO Maxim

"...continuous edge- or corner- sharing of Cd²⁺, In³⁺ and Sn⁴⁺ octahedra is a necessary criterion for the formation of an n-type transparent conductor."

-R. D. Shannon et al., J. Phys. Chem. Solids, 38, 877 (1977).

What about Zn²⁺?

What About Zn²⁺?

spinel conductivities

G.P. Palmer, K.R. Poeppelmeier, and T.O. Mason. J Solid State Chem 134. 192 (1997)
D.R. Kammler, T.O. Mason, D.L. Young, and T.J. Coutts. J App Phys 90. 3263 (2001)
X. Wu, T.J. Coutts, and W.P. Mulligan, J Vac Sci Tech A15. 1057 (1997)
D.R. Kammler, T.O. Mason, and K.R. Poeppelmeier. Chem Mater 12. 1954. (2000)

Shannon's n-type TCO Maxim

"...continuous edge- or corner- sharing of Cd²⁺, In³⁺ and Sn⁴⁺ octahedra is a necessary criterion for the formation of an n-type transparent conductor."

-R. D. Shannon et al., J. Phys. Chem. Solids, 38, 877 (1977).

What about ZnO?

Tetrahedral Coordination TCO

wurtzite structure

- ZnO is the only TCO with exclusively tetrahedral coordination
- In other crystal structures/CNs Zn is not as strong a contributor to TCO behavior
- Zn cations play an important role in stabilizing amorphous ntype TCOs

Bulk Experimental Methods

Solid State Reactions

- Batch calculations of precursors (usually constituent oxides)
- Weighing and mixing of precursors

Pellet Pressing

Cold pressing

Hot pressing

- Typically ~130 MPa with steel dies
- Can add binder/ pressing aid
- 0.25" to 1.5" pellets

- Al₂O₃ dies prevent reduction
- 67 774 MPa max
- 0.5" to 1.7" pellets

Solid State Reaction/Sintering

- Up to ~ 1400°C
- In fume hoods when needed
- Nested crucibles minimize preferential evaporation (e.g. Zn)
- Sacrificial powder minimizes contamination

 Quenching preserves high temperature phase

Limitation: thermal shock

Time frame: 1 day – 2 weeks

Multi-target Pulsed Laser Deposition (collaboration with Prof. Chang, Dr. Buchholz)

Rietveld Analysis

Determining Phase Boundaries

Target Composition (wt%)

Lever Rule: $f_{\beta} = (y-z)/(x-z)$ Disappearing Phase Method
Phase Boundaries: Vegard's Law

- Lattice constant changes linearly with composition until the solubility limit is reached.
- Can use Rietveld refinement with internal silicon standard to accurately measure the lattice constant.

The Zinc Oxide – Cobalt Oxide System

4-Point Conductivity and Thermopower

In situ bulk electrical measurements

Brouwer Analysis for Determining Point Defect Mechanism

Powder-Solution-Composite Method

Motivation: Measurement of lowtemperature derived materials in powder form.

Technique: Based on impedance spectroscopy of composite materials

Comparison of slurry composite conductivity to matrix (plain NaCl solution) conductivity:

Cross over point corresponds to bulk value for powder in question.

Use effective medium theory to fit the data.

AC Impedance Spectroscopy (AC-IS)

Apply oscillating voltage, measure current response. Phase offset = θ/ω Ratio is the complex impedance, which depends on frequency. $Z(\omega) = V(t) / I(t)$

> Nyquist plot can illustrate different processes in frequency domain

> > Re(Z)

-Im(Z)

ω

Hall Effect

Hall Effect: 17 T and 0.58 T

Experiment: Confirms Robust P-type Character

Both Hall resistance and Seebeck coefficient are positive

Diffuse Reflectance Spectroscopy

Diffuse Reflectance Spectroscopy

Defect Chemistry of n-type TCOs

Kröger-Vink Notation:

Writing Balanced Defect Reactions:

Note: sites can be created or destroyed, but only in the stoichiometric ratio of the host!

An Example Point Defect Reaction

$$O_0^x \stackrel{ZnO}{\iff} 1/2O_2(g) + V_0^{"} + 2e^{-g}$$

 $K_{red} pO_2^{-1/2} = [V_0^{-1/2}] n^2$

 $n = 2 [V_0"] \text{ or } [V_0"] = n/2$

$$n = (2K_{red})^{1/3} pO_2^{-1/6}$$

Point defects in n-type TCOs

 $O_0^x \leftrightarrow 1/2O_2(g) + V_0^{"} + 2e'$

Is this the whole story?

The Frank-Köstlin Cluster

Formation of point defect associates:

Reactiion: $(2Sn_{\ln}O_{i}'')^{\mathbf{x}} \xrightarrow{1/2} O_{2}(g) + 2Sn_{\ln} + 2e^{\mathbf{x}}$ $n \propto pO_{2}^{-1/8}$

Kröger-VinkSn'_{In} represents a tin (on an indium site) with 1+ chargenotation O_i'' represents an oxygen interstitial with 2- charge O_O represents an oxygen (on an oxygen site) $()^X$ represents a neutral defect

¹ G Frank and H Köstlin, Appl Phys A, 27 (1982), 197

ITO Defect Chemistry ITO $n = 2[V_0'] n = [Sn_{ln}] n = [Sn_{ln}]$ log [] -1/6 -1/8 -(2Sn_{In} O_i")^x

 $\log pO_2$

Evidence for Defect Associates in ITO

- Rietveld analysis of combined neutron and Xray diffraction patterns (bulk and nano ITO)
 →Sn-to-oxygen interstitial ratio ~2:1
- EXAFS studies of bulk and nano ITO specimens
 - Sn coordination number > 6
 - First near neighbor distances of Sn similar to that in SnO₂

X-ray Absorption Fine Structure

Defect Chemistry of n-type TCOs (Cont'd)

The Cd-In-Sn System D. R. Kammler, T. O. Maosn, K. R. Poeppelmeieir, J. Am. Ceram. Soc., 84, 1004 (2001) InO_{1.5} (bixbyite) 1175°C spinel + bixbyite ITO CdIn₂O₄ $In_{2-2x}(Cd,Sn)_{2x}O_3$ (0 < x < 0.34)(bixbyite) $(1-x)Cdln_2O_4 - (x)Cd_2SnO_4$ rutile + bixbyite (0 < x < 0.75)(spinel) spinel + rocksalt CdO SnO₂ $o-Cd_2SnO_4$ CdSnO₃ (rocksalt) (rutile) (Sr_2PbO_4) (o-Perovskite)

Extended Solubility Ranges

<u>Compound</u>	<u>Structure</u>	<u>Solubility</u>
CdSnO ₃	o-Perovskite	4.5%
In ₂ O ₃	Bixbyite	34%
CdIn ₂ O ₄	Spinel	75%

<u>Isovalent substitutions</u>: $[D^{\bullet}] = [A']$ In₂O₃ + Cd_{Cd}^x + Sn_{Sn}^x → In_{Cd}[•] + Sn_{In} ' + CdSnO₃ CdO + SnO₂ + 2In_{In}^x → Cd_{In} ' + Sn_{In}[•] + In₂O₃

$$\stackrel{\text{Size-matched substitutions:}}{r_{\text{In}^{3+}}} = 0.80 \stackrel{\circ}{\text{A}} \approx \frac{r_{\text{Cd}^{2+}} + r_{\text{Sn}^{4+}}}{2} = \frac{0.95 \text{ A} + 0.69 \text{ A}}{2} = 0.82 \stackrel{\circ}{\text{A}}$$

Biphasic Studies

Conductivity Variations

phase field width

sensitivity to reduction

Self-Doped Materials

Inherent Off-Stoichiometry

self-doped TCOs

In Situ Conductivity: $\ln_{1,2}Zn_{0,4}Sn_{0,4}O_3$

The Cd-In-Sn System D. R. Kammler, T. O. Maosn, K. R. Poeppelmeieir, J. Am. Ceram. Soc., 84, 1004 (2001) InO_{1.5} (bixbyite) 1175°C spinel + bixbyite ITO CdIn₂O₄ $In_{2-2x}(Cd,Sn)_{2x}O_3$ (0 < x < 0.34)(bixbyite) $(1-x)Cdln_2O_4 - (x)Cd_2SnO_4$ rutile + bixbyite (0 < x < 0.75)(spinel) spinel + rocksalt CdO SnO₂ $o-Cd_2SnO_4$ CdSnO₃ (rocksalt) (rutile) (Sr_2PbO_4) (o-Perovskite)

Evidence for D/A Excess in Spinels

Cd₂SnO₄ Theory Predictions

- n-type character *not* attributable to typical intrinsic donors:
 - $-V_0$ has a small ΔH_f , but lies deep in the gap
 - Cd_i is a shallow donor, but ΔH_f is large
- Antisite defects are shallow donors (Sn_{Cd}•) and acceptors (Cd_{Sn}'), but the former has a lower ΔH_f
- The net result: [Sn_{Cd}•] > [Cd_{Sn}']; Cd₂SnO₄ is consistently n-type

"Self-doping of cadmium stannate in the inverse spinel structure," S. B. Zhang and S. –H. Wei, *Appl. Phys. Lett.* 80, 1376 (2011).

What About p-Type TCOs? Stay tuned...

Conclusions

- With the exception of ZnO, the best TCOs are high octahedral site density crystal structures
- They are n-type only
- The "basis" cations are In, Sn, Zn, Cd and Ga
- Their defect chemistries can be complicated (not just oxygen vacancies)
- Phase diagrams play an important role
- If you can make a comparable p-type TCO...