Oxides for thermoelectricity

Sylvie Hébert Laboratoire CRISMAT UMR6508 CNRS et ENSICAEN

UCSB – ICMR Summer School on Inorganic Materials for Energy Conversion and Storage August 2012

Laboratoire CRISMAT Cristallographie et Sciences des Matériaux

✓ CRISMAT : some figures

- > 120 persons
- ➢ 47 researchers
- ➢ 15 post-doc
- 42 Ph-D students
- > 125 publications per year

Search for new oxides : high Tc superconductors, colossal magneto-resistance, thermoelectrics, multiferroics... And Beyond oxides

Thermoelectric Activities

7 permanent staff + 1 engineer + students / postdocs + the rest of the lab!

Ramzy Daou, Franck Gascoin, Christophe Goupil, Emmanuel Guilmeau, Sylvie Hébert, Antoine Maignan, Jacques Noudem

 \rightarrow Synthesis / Processing

 \rightarrow Low and high T thermoelectric properties

 \rightarrow Modelization of the thermoelectric properties

 \rightarrow Module and module testing

Techniques

80 furnaces

Thin-films (PLD's)

5 TEM, 3 SEM

Cristallography (8 diffractometers)

thermomechanical

tests

+ SPS

Low T properties

Thermopower and thermal conductivity measurements developped by Jiri Hejtmanek (Prague), using PPMS environment

High T properties

ZEM 3 Ulvac Riko Combined Seebeck and resistivity measurement (RT to 700°C)

Modules

Oxides for thermoelectricity

Aim of this tutorial : Best thermoelectric oxides / show the specificities of oxides

• Introduction :

Oxides specificities / Models for oxides / Best thermoelectric oxides

Increase₁

of the carrier density

- Semi conductors : the Heikes formula
- Degenerate semi-conductors : best n type oxides
 - Na_xCoO₂ and misfit compounds
 - Nanostructuration
 - Modules
 - Conclusion

Why oxides?

Strong interplay between spin/charge/lattice

Property	Materials
Metals	CrO ₂ , Fe ₃ O ₄ , SrRuO ₃
Insulators	Cr_2O_3 , CoO, Fe_2O_3 , Al_2O_3
Metal-Insulator Transition	VO ₂ , V ₂ O ₃
Superconductors	Ba(Bi,Pb)O ₃ , YBa ₂ Cu ₃ O ₇
Piezo- and Ferroelectrics	Pb(Zr,Ti)O ₃ , BaTiO ₃
Catalysts (chemical, photo-)	TiO ₂ , LaCoO ₃ , BiMoO ₄
Ferro-, Antiferro-, Ferrimagnets	CrO ₂ , MnO, MnFe ₂ O ₄
Pigments	TiO ₂ , CoAl ₂ O ₄ , Co ₃ (PO ₄) ₂
Sensors	Ca _x Zr _{1-x} O _{2-x} , SnO ₂
Negative Thermal Expansion	ZrW ₂ O ₈
Ionic Conductors (battery, SOFC)	Li _x MnO ₂ , Ca _x Zr _{1-x} O _{2-x}
Thermoelectrics	Na _x CoO ₂
Non-Linear Optics	LiNbO ₃

From M. Subramanian, Large family of compounds, OSU Can be cheap, environment friendly and resistant in air

Specificities of oxides

High T synthesis and synthesis possible in oxydizing environment Oxides can be stable at high T and in air Non toxic elements, abundance of elements...

Strong electronic correlations

- \rightarrow Difficult to calculate the band structure
- \rightarrow **But** could be interesting for the Seebeck!

Kinetic energy ~ Repulsive Coulomb energy

Strong renormalization of effective masses Narrow bands

D. Basov et al., Rev. Mod. Phys. 83, 471 (2011) A. Georges et al., Rev. Mod. Phys. 68, 13 (1996)

Possible tuning of the electronic correlations

FIG. 1 (color online). The ratio of the experimental kinetic energy and the kinetic energy from band theory K_{exp}/K_{band} for various classes of correlated metals and also for conventional metals. The data points are offset in the vertical direction for clarity. From Qazilbash, Hamlin *et al.*, 2009.

Influence of electronic correlations

FIG. 30. Local spectral density $\pi D\rho(\omega)$ at *T*=0, for several values of *U*, obtained by the iterated perturbation theory approximation. The first four curves (from top to bottom, *U/D* =1,2,2.5,3) correspond to an increasingly correlated metal, while the bottom one (*U/D*=4) is an insulator.

Modification of DOS \rightarrow Increase of S?

A. Georges et al., Rev. Mod. Phys. 68, 13 (1996)

Seebeck

Calcul of U impact on the Seebeck coefficient

J. Merino et al., PRB61, 7996 (2000)

Introduction **Bibliography : Thermoelectric oxides**

•First papers in the 60's : SnO₂, SbO₂... Degenerate n type semi-conductors

•1980's : thermopower is used as a probe for the cuprates

•1990's : Doped ZnO as best n type thermoelectric oxide (Ohtaki et al.)

•1997 : Na_xCoO₂ (Terasaki et al.)

Web of Science®

<< Back to previous page

Citation Report Topic=(thermoelectric oxides)

Timespan=All Years, Databases=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, IC,

This report reflects citations to source items indexed within Web of Science. Perform a Cited Reference Search to include citations to items not indexed within Web of Science.

PRB46, 14928 (1992)

Systematics in the thermoelectric power of high- T_c oxides

S. D. Obertelli and J. R. Cooper* Interdisciplinary Research Centre in Superconductivity, Madingley Road, Cambridge CB3 OHE, United Kingdom

> J. L. Tallon New Zealand Institute for Industrial Research and Development, P.O. Box 31310, Lower Hutt, New Zealand (Received 2 September 1992)

High Tc superconductors

Many superconducting cuprates show a parabolic variation of T_c with hole concentration p, there being a minimum and a maximum hole concentration for superconductivity. Thermoelectric power (TEP) measurements reported here as a function of p for a number of oxides reveal several important trends: (1) close similarities in the TEP of several compounds and a change in sign of the room-temperature TEP near the maximum T_c , (2) continuity in the TEP when doping across the two superconducting-nonsuperconducting boundaries, and (3) a universal correspondence of the room-temperature TEP with p over the whole range of doping.

Correlation between Seebeck / doping / Critical temperature

T (K)

FIG. 2. (a) Thermoelectric power vs temperature for underdoped YBa₂Cu₃O_{7- δ} with 0.52 $\leq \delta \leq$ 0.87. For $\delta >$ 0.5 the es-

FIG. 3. Room-temperature thermoelectric power S(290 K) vs hole concentration (and T_c/T_c^{max}) for various high- T_c cuprates in both the underdoped (logarithmic scale) and overdoped (linear scale) regions. $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$ (LSCO) data from Ref. 33.

 $Zn_{1-x}Al_xO(x = 0 - 0.1)$

But κ is too high !!!

M. Ohtaki et al., JAP79, 1816 (1996)

Broadband model for extrinsic n type semiconductor

 $\sigma = ne\mu$,

 $S = -(k/e)[\ln(N_v/n) + A],$ Large mobility of the carriers : 3 – 7cm²/Vs

 $κ = 40Wm^{-1}K^{-1} at 300K$ $κ=5.4 Wm^{-1}K^{-1} at 1000°C$

Na_{0.7}CoO₂ ' Phonon Glass / Electron crystal '

I. Terasaki et al., Phys. Rev. B 56, R12685 (1997)

 $P = 40 \ 10^{-4} \ WK^{-2}m^{-1}$

 $P = 50 \ 10^{-4} \ W K^{-2} m^{-1}$

2 different families for the best thermoelectric oxides

- Type p : oxides related to Na_xCoO₂, metallic <u>and</u> large S
- Type n : 'transparent conducting oxides', degenerate semi-conductors

ZT (type p) > ZT (type n)

High T properties of Na_xCoO₂

K. Fujita et al. JJAP40, 4644 (2001)

Crystal and polycrystal measurements

Crystals : 1.5 × 1.5 × 0.03 mm³

ZT ~ 1 for crystals only at 800K

Introduction

Oxides

Modelization of thermoelectric properties in oxides

while the bottom one (U/D=4) is an insulator. Possible increase of S due to strong correlations?

 $ZT = \frac{S^2 T}{\rho \kappa} = \frac{S^2 T}{\rho (\kappa_e + \kappa_l)}$

• <u>**Resistivity</u>** : $\rho^{-1} = en(E)\mu(E)$ </u>

A large mobility is required (difficult for oxides!)

<u>Thermal conductivity</u>

Electronic part related to ρ⁻¹ (Wiedemann Franz), usually small Lattice part has to be minimized

Mott's formula : influence of electronic correlations

 $\pi^2 k_p^2 = \partial \ln \sigma(E)$

$$S = \frac{1}{3e} T \left(\frac{1}{2\zeta} \right)_{E=E_F}$$
Free electron gas
$$S = -\frac{\pi^2}{3} \frac{k_B^2 T}{e} \frac{N(\epsilon_F)}{n} \left(1 + \frac{2\zeta}{3} \right).$$
Carrier density

Very similar to the electronic specific heat

Models

$$C_{el}/T = \gamma = \frac{\pi^2}{3} k_B^2 N(E_F)$$
 γ is a prob

 γ is a probe of electronic correlations

Relationship between Seebeck and specific heat at low T??

K. Behnia et al. JPCM 16, 5187 (2004)

Low T limit

$$q = \frac{S}{T} \frac{N_{Av}e}{\gamma} = cste$$

K. Behnia et al. JPCM 16, 5187 (2004)

The Heikes formula

High T limit

VOLUME 13, NUMBER 2

15 JANUARY 1976

Thermopower in the correlated hopping regime

P. M. Chaikin*

Department of Physics, University of California, Los Angeles, California 90024

G. Beni

Bell Laboratories, Murray Hill, New Jersey 07974 (Received 16 June 1975)

The high-temperature limit for the thermopower of a system of interacting localized carriers is governed entirely by the entropy change per added carrier. The calculation of this quantity reduces to a simple combinatorial problem dependent only on the density of carriers and the interactions stronger than the thermal energy. We have thus been able to generalize the Heikes formula to include several cases of interacting Fermi systems with spin.

'Simple combinatorial problem'

Calculated for organic thermoelectrics

FIG. 1. Possible high-temperature site configuration of (a) spinless fermions; (b) electrons with an infinite onsite repulsion; and (c) electrons with no interactions.

P. M. Chaikin et al. Phys. Rev. B 13, 647 (1976)

The Heikes formula

Limit $T \rightarrow \infty$: S ~ entropy / carrier

P. M. Chaikin et al. Phys. Rev. B 13, 647 (1976)

Spin entropy

Extra term in the Heikes formula due to the spin degeneracy

Mixed valency cation $M^{n+} / M^{(n+1)+}$:

J. P. Doumerc JSSC 110, 419 (1994)

Na_xCoO₂:

Spin and orbital degeneracy Co³⁺ (3d⁶)/Co⁴⁺ (3d⁵)

J. P. Doumerc JSSC 109, 419 (1994) W. Koshibae et al., Phys. Rev. B 62, 6869 (2000)

Large S in Na_xCoO₂ Origin of the metallicity ?

Band structure?

Rhombohedral crystalline field ^{Na} ^(50% vacant) Lifting of the t_{2g} levels degeneracy D. J. Singh, Phys. Rev. B 61, 13397 (2000)

Peak of $N(E_F)$

$$\frac{S}{T} = \frac{\pi^2 k^2}{3e} \left(\frac{d \ln(\sigma)}{dE}\right)_{E=E_{r}}$$

avec
$$\sigma = N(E) < v_F(E)^2 >$$

\$ **S** = +110 μ V/K at 300K calculated for NaCo₂O₄

a_{1g} : localized moments / heavy holes e '_g : mobile carriers / light holes

T. Yamamoto et al., Phys. Rev. B 65, 184434 (2002)

Metallic and large S

'Thermoelectric effects

in a strongly correlated model for Na_xCoO₂'

t-J model : t = hopping and J = spin coupling Kubo formalism

Valid at any T (different from the limit $T \rightarrow \infty$)

$$S = S_{transport} + S_{Heikes}$$

Black : Heikes formula Red : S = $S_{transport} + S_{Heikes}$

In a large part of the phase diagram (x, T, t), the Heikes formula gives a good estimate of S

M. R. Peterson et al., PRB76, 165118 (2007)

The Kelvin formula

M. R. Peterson et al., PRB82, 195105 (2010)

t- J model for Na_xCoO_2 with x ~ 0.7

Heikes formula valid for T > 6 - 8 t (blue curve)

First models : crucial role of the CoO₂ layers

- Lifting of the t_{2q} orbitals : Seebeck calculated from the Mott's formula + metallicity
 - High T : the Heikes formula, effect of the spin and orbital degeneracies

 \Rightarrow Beyond the CoO₂ layers : the impact of the block layer?

Models Electronic correlations + Disorder effects DMFT calculations Na_xCoO₂

Disorder potential induced by Na⁺ cations

Correlations effect

FIG. 18. (Color online) The thermopower S as a function of the correlation U without disorder ($\Delta \varepsilon = 0$) for T = 290 K. The inset shows the corresponding values for the resistivity ρ .

Disorder effect

P. Wissgott et al., PRB84, 085129 (2011)

Semi-conducteurs : The Heikes formula

*Type p : Pr_{1-x}Ca_xCrO*₃

Orthochromites

Introduction of holes : Activated behavior with a decrease of ρ **Perovskite structure**

 $Pr^{3+}_{1-x}Ca^{2+}_{x}Cr^{3+/4+}O_3: 3d^3/3d^2$

S. Pal et al., Eur. Phys. J. B 53, 5 (2006)
*Type p : Pr*_{1-x}Ca_xCrO₃

Orthochromites

 $Pr^{3+}_{1-x}Ca^{2+}_{x}Cr^{3+/4+}O_3: 3d^3/3d^2$

Decrease of S induced by doping

S constant from 200K to high T

S. Pal et al., Eur. Phys. J. B 53, 5 (2006)

Marsh and Parris, Phys. Rev. B 54, 7720 (1996)

*Type p : Pr*_{1-x}Ca_xCrO₃

Power factor

Fig. 6. ρ vs. T (left scale) and Power Factor ($PF = S^2/\rho$) (right scale) of $Pr_{0.7}Ca_{0.3}CrO_3$ measured up to 700 K.

Change of sign in LaCoO₃

LaCoO₃

Heikes formula : possible change of sign

Small x is |S| very large

Change of sign in $LaCoO_3$

 \mathbf{O}

 $LaCoO_3 \times 0 : La^{3+}Co^{3+}O_3$

 $Sr^{2+} x > 0 : La_{1-x}Sr_xCo^{3+}Co^{4+}O_3$

A. Maignan et al., EPJB 39, 145 (2004)

Change of sign in $LaCoO_3$

LaCoO₃: B site substitution

K. Berggold et al., PRB72, 155116 (2005)

Single crystals measurements

FIG. 1. (Color online) Thermal conductivity of $La_{1-x}Sr_xCoO_3$ a function of temperature for different doping *x*.

FIG. 5. (Color online) Figure of merit of $La_{1-x}Sr_xCoO_3$ as a function of temperature for different doping *x*.

K. Berggold et al., PRB72, 155116 (2005)

Туре p : LaCoO₃

LaCoO₃ perovskites

 $La_{1-x}Sr_{x}Co^{3+}_{1-x}Co^{4+}_{x}O_{3}$ ZT = 0.18 at 300K

J. Androulakis et al., APL84, 1099 (2004)

Semi-conducting with 5% hole doping

1.2 $aCoO_{2}$ ZT=0.18 0.035 27mΩ.cm à 300K 1.0 0 16 850 0.030 0.81.12 $a_{0.95}Sr_{0.05}CoO_3$ 0.025 ρ (Ω*cm) k (W/cmK) S (µV/K) 0.6 0.08 5 0.020 700 0.4 0.01 650 0.04 0.2 0.02 600 300 0.010 0.0550 120 140 180 200 220 240 260 280 60 100 120 140 160 180 200 220 240 260 280 120 140 80 160 770 240 300 260 280 Temperature (K) Temperature (K) Temperature (K)

Eg decreases from 250 meV from $LaCoO_3$ to 36meV for $La_{0.95}Sr_{0.05}CoO_3$

Similar k as Berggold et al., but much larger S Oxygen stoechiometry? Change of sign in $LaCoO_3$

Resistivity of La_{1-x}M_xCoO₃

Asymmetry between hole and electron doping

 ρ (n type) > ρ (p type)

Typical of many oxides

Spin blockade mechanism

A t_{2g} hole Co⁴⁺ can hop in a background of LS Co³⁺

3d⁵ / 3d⁶

An e_g electron Co²⁺ cannot move in a background of LS Co³⁺, requires to flip other spins, wrong spin-states LS Co²⁺ and IS Co³⁺ instead of LS

3d⁶ / 3d⁷

A. Maignan et al, Phys. Rev. Lett. 93, 026401 (2004)

The 112 family

The 112- family Co³⁺/Co⁴⁺ or Co²⁺/Co³⁺

Pyramidal and octahedral sites Possible spin state transitions

400

FIG. 3. (Color online) Temperature dependences of the Seebeck coefficient Q(T) of (a) GdBaCo₂O_{5+x} and (b) NdBaCo₂O_{5+x} A. A. Taskin et al., PRB73, 121101 (2006)

Quantitative analysis of S

Calculations of spin/orbital degeneracies taking into account the different sites (octahedral / pyramidal)

Explains the larger values for n type (HS Co²⁺) compared to p type (LS Co⁴⁺)

FIG. 4. (Color online) (a) The doping dependence of the Seebeck coefficient Q(x) of GdBaCo₂O_{5+x} (circles) and NdBaCo₂O_{5+x} (squares) crystals at T=100 K. The hatched area represents the entire available range of the entropy contribution to the thermopower $\Delta Q_n(x)$ and $\Delta Q_p(x)$. (b) The doping dependence of the conductivity $\sigma(x)$ of GdBaCo₂O_{5+x} (circles) and NdBaCo₂O_{5+x} (squares) crystals at T=100 K. (c) Jonker plot for $RBaCo_2O_{5+x}$ (see text).

A. A. Taskin et al., PRB73, 121101 (2006)

The 112 family

$$S = -\frac{k_{B}}{e} \ln(\frac{2S_{0} + 1}{2S_{1} + 1}) \quad S_{0} = 3/2 \text{ (Mn^{4+})}$$
$$S_{1} = 2 \text{ (Mn^{3+})}$$

W. Kobayashi et al., J. Appl. Phys. 95, 6825 (2004)

'Probe' of Jahn Teller effect

High 7

Low T

Semi – conducting oxides

The Heikes formula

 \rightarrow Possibility to get p and n type oxides

 \rightarrow Spin and/or orbital degeneracies have to be taken into account for a quantitative analysis

 \rightarrow Explains the asymmetry between n and p type

But too large resistivity !

Degenerate semi-conductors : Best n type oxides

Type n : ZnO

 $Zn_{1-x}Al_xO(x = 0 - 0.1)$

к too high!

M. Ohtaki et al., JAP79, 1816 (1996)

Broadband model for extrinsic n type semiconductor

 $\sigma = ne\mu$,

 $S = -(k/e)[\ln(N_v/n) + A],$ Large mobility of the carriers : 3 – 7cm²/Vs

 Type n : CaMnO₃

Partially filled 3d levels

Perovskite Ca_{1-x}Sm_xMnO_3 Mn³⁺ $t_{2g}^3e_{g}^1$, HS JT V(Mn)=4-x

Type n : CaMnO₃

 $-\alpha = \pi^{2*} k_{B}^{2} / (3e) * T^{*} \{ N(E) / n + \text{cst.} \} |_{E=E_{F}}$

J. Hejtmanek et al., PRB60, 14057 (1999)

Type n : CaMnO₃

$Ca_{0.9}M_{0.1}MnO_3$

M. Ohtaki et al., JSSC120, 105 (1995)

n type : SrTiO₃

$Sr_{1-x}La_xTiO_3$

3d⁰ / 3d¹

 $SrTiO_3$ = non magnetic insulator La³⁺ : doping of Ti³⁺ in a matrix of Ti⁴⁺

T. Okuda et al., PRB63, 113104 (2001)

H. Muta et al., J. Alloys and Comp.350, 292 (2003)

Sr_{1-x}La_xTiO₃

TABLE I. Various physical quantities derived from measurements of the resistivity, specific heat, Hall, and Seebeck coefficients (S) in $Sr_{1-x}La_xTiO_3$ crystals; *n* is the carrier (electron) density, *A* is the T^2 coefficient of resistivity, γ is the electronic specific heat coefficient, m^* is the carrier effective mass, T_F is the Fermi temperature, Θ_D is the Debye temperature, and μ is the chemical potential. S_r represents the calculated Seebeck coefficient with use of the scattering parameter *r* [see Eq. (1) in the text]. *n*, μ , *S*, and *S_r* are the values at 300 K.

X	<i>n</i> (1/Ti)	$n (10^{20} \text{ cm}^{-3})$	$A \ (\Omega \text{ cm/K}^2)$	γ (mJ/K ² mol)	m^*/m_b	<i>Т_F</i> (К)	Θ _D (K)	μ (eV)	-S (μ V/K)	$\frac{-S_0}{(\mu \text{V/K})}$	$-S_1$ (μ V/K)	$\frac{-S_2}{(\mu \text{V/K})}$
0	0.0052	0.877	3.68×10^{-7}	0.63	1.17	343	402	0.0061	380	190	268	345
0.015	0.014	2.31	2.58×10^{-8}						350			
0.02	0.022	3.73	1.21×10^{-8}	1.04	1.51	697	378	0.0488	260	150	182	247
0.04	0.05	8.41	6.69×10 ⁻⁹						162			
0.05	0.061	10.23	5.14×10^{-9}	1.96	1.62	1273	380	0.102	147	93	118	168
0.1	0.11	19.31	3.08×10 ⁻⁹						88.7			

Carrier concentration 10¹⁹ -10²¹ cm⁻³

γ smaller than for p type oxides Less sensitive to correlation effects

T. Okuda et al., PRB63, 113104 (2001)

Type p : delafossites

CuCr_{1-x}Mg_xO₂ delafossites

CrO₂ layers : edge shared octahedra

T. Okuda et al., PRB72, 144403 (2005), Y. Ono et al., ICT 2006

CuRh_{0.9}Mg_{0.1}O₂ : ZT = 0.15 à 1000K H. Kuriyama et al., ICT2006

In_{2-x}Ge_xO₃

Doping or microstructure effect??

EDS analyses: Ge is not detectable in the grains

No grain size modification

In_{2-x}Ge_xO₃

ZT = 0.4 à 1273K

D. Bérardan et al., Solid Stat. Comm. 2008

Doped CaMnO₃: **New preparation techniques**

Soft chemistry techniques

L. Bocher et al., Inorg. Chem. 47, 8077 (2008)

Reduction of κ Possible size effect?

Fig. 1. a) SEM picture and b) low resolution TEM of hollow perovskite spheres

Figure 8. (a) Total thermal conductivity κ_{total} of CaMn_{1-x}Nb_xO₃ (x = 0.02, 0.05, and 0.08) synthesized by both SSR (closed symbols) and SC (half-open symbols) methods and lattice contribution κ_l (open symbols) versus *T* and (b) highlight in the low thermal conductivity range.

Degenerate semi - conductors

- Classical behavior which can be described by the Boltzmann model Very small enhancement of the effective mass
 - Mostly n type (p tye in delafossites)

Problem : too large thermal conductivity
Microstructure modification is necessary to enhance ZT

Na_xCoO₂ and related metallic compounds (p type)

Na_xCoO_2 Misfits

Cobalt bronzes family of Na_xCoO₂

C. Fouassier et al., JSSC6, 532 (1973)

Fig. 1. Layer structure of Na_{0.70}CoO_{2-y}.

J. Molenda, C. Delmas, P. Dordor, A. Stoklosa, Solid Stat. Ionics 12, 473 (1989) Introduction

Na_{0.7}CoO₂ ' Phonon Glass / Electron crystal '

I. Terasaki et al., Phys. Rev. B 56, R12685 (1997)

Power factor $P=S^2/\rho$ at 300K

Bi₂Te₃

 $P = 40 \ 10^{-4} \ WK^{-2}m^{-1}$

Lamellar oxides with CoO₂ layers

 Na_xCoO_2

Misfit family : 2, 3 or 4 separating layers

Heikes formula : doping influence? Band structure influence : peculiarity of CoO₂ layers ? Role of separating block layers?

Modification of the block layers

K_xCoO₂

 Na_xCoO_2

Misfits

M. Blangero et al., Inorg. Chem. 44, 9299 (2005)

Na_xCoO₂Unique behavior of Cdl₂ type layers: Misfits Comparison with other oxides

Perovskite $Sr_{2/3}Y_{1/3}CoO_{8/3+\delta}$

Corner shared octahedra ≠ edge shared octahedra

A. Maignan et al., JSSC178, 868 (2005)
Oxygen content influence

 Na_xCoO_2

Misfits

M. Karppinen et al., Chem. Mater. 16, 2790 (2004)

<u>Misfits</u> : S the largest for the smallest 'Co⁴⁺' content

Doping effect in the misfit family

$$\mathbf{v}_{Co} = 4 - \frac{\alpha}{b_1 / b_2}$$

Modification of v_{Co} via α and b_1/b_2 Link between v_{Co} and S?

$\substack{\textit{Na_xCoO_2}\\\textit{Misfits}} \textbf{BiSrPbCoO single crystals : modification of } \alpha$

Generalized Heikes formula : increase of v_{Co} 3.59 for BSCO and 3.65 for BPSCO

$^{\textit{Na}_{x}\textit{CoO}_{2}}_{\textit{Misfits}}$ BiSrPbCoO single crystals : modification of α

At 100K 1.06 \times 10²¹ cm⁻³ for BSCO 1.73 \times 10²¹ cm⁻³ for BPSCO

Increase of v_{Co} 3.11 3.18

t- J model : Linear T dependence of R_H t ~10 – 40K Justifies the Heikes formula B. Kumar et al., PRB68, 104508 (2003) Y. Wang et al., cond-mat/0305455 G. Leon et al. , PRB78, 085105 (2008)

W. Kobayashi et al., JPCM21, 235404 (2009)

Na_xCoO₂ Misfits

Influence of b₁/b₂

W. Kobayashi et al.

If
$$b_1/b_2$$
, concentration of Co^{4+} ,
 $v_{Co} = 4 - \frac{\alpha}{b_1/b_2}$

S at 300K depends on Co⁴⁺ modified through b₁/b₂

Carrier concentration ~ 10^{22} cm⁻³, larger than for conventional thermoelectrics

Heikes formula

$$S = -\frac{k_B}{|e|} \ln(\frac{g_4}{g_3} \frac{1-x}{x})$$

Co valency in BiCaCoO/ BiSrCoO / BiBaCoO?

Heikes (S at 300K)	Hall effect
3.5 -3.7 for $g_4 / g_3 = 6$	3.05 -3.15

 Na_xCoO_2 Misfits

Carrier concentration

Co^{3.2+} for BiSrCoO

Co^{3.1+} for BiCaCoO

single hole-like fermi surface (a_{1g} character)

 $k_F = 0.57 \pm 0.05 \text{ Å}^{-1}$ for BiBaCoO

Na_xCoO₂

Misfits

- \rightarrow similar to $k_{\rm F}$ of Na_xCoO₂ (x=0.7)
- Co^{3.3+} for BiBaCoO
 V. Brouet et al., PRB76, 100403 (2007)

Co valency in BiCaCoO/ BiSrCoO / BiBaCoO

Misfits

Heikes g ₃ /g ₄ = 1/6 S à 300K	Seebeck avec S(H) $g_3/g_4 = 1$ BiCaCoO	Effet Hall	ARPES BiBaCoO	RMN	Susceptibilité BiCaCoO
3.5 -3.7	3.33 P. Limelette et al., PRL97, 046601 (2006)	3.05 -3.15 W. Kobayashi et al.	3.3 V. Brouet et al., PRB76, 100403 (2007)	3.1 -3.3 J. Bobroff et al., PRB76, 100407 (2007)	3.24 M. Pollet et al., JAP101, 083708 (2007)

 $g_3 / g_4 = 1/2$ instead of 1/6

Confirms the results in BiCaCoO : $v_{Co} = 3.24$

M. Pollet et al., JAP101, 083708 (2007)

P. Limelette, PRB71, 233108 (2005)

P. Limelette, PRL97, 046601 (2006)

Low T : Spin entropy

BiCaCoO : excess of S at low T A. Maignan et al., JPCM 15, 2711 (2003)

Na_xCoO₂

Misfits

Observed also in Na_xCoO₂ [*Wang et al. Nature 423, 425 (2003)*]

Spin entropy at low T

Na_xCoO_2 Misfits

Misfit oxides

NaCI-like triple layer (RS)

For T > 100K : metallicity + large S

- **High T** : Seebeck depends on Co⁴⁺ Heikes formula with spin / orbital degeneracye)
 - Low T : electronic correlations : S ~ γT + spin entropy depending on doping
- High T limit : small t from Hall effect. Justifies the Heikes formula

S. Hébert et al., PRB64, 172101 (2001), P. Limelette et al., PRL97, 046601 (2006), W. Kobayashi et al., JPCM21, 235404 (2009)

Thermoelectric power of misfits

Power factor

In conventional semiconducting thermoelectric material such as Bi_2Te_3 , *n* is an important parameter to tune the properties.

How to modify the electronic properties? Influence of the block layer?

$Na_x CoO_2$ Misfits

Role of the block layer?

• Role of Na⁺ : Curie-Weiss behavior obtained by introducing the electrostatic potential of Na⁺ (Co³⁺ S = 0 / Co⁴⁺ S = 1/2) *C. Marianetti et al., PRL98, 176405 (2007)*

•Kagomé lattice in Na_xCoO_2 with x = 2/3 : strong electronic correlations *F. Lechermann et al., PRL107, 236404 (2011)*

Curie-Weiss

High T measurements in Ca₃Co₄O₉

 Na_xCoO_2

Misfits

Thermal conductivity

 κ smaller in misfits

 $Na_x CoO_2$

Misfits

Influence of incommensurability?

A. Satake et al., JAP96, 931 (2004)

20

10

0 í٥

axis а

300

b axis

Ca₃Co₄O₉

Temperature (K)

200

100

- Charge transfer between the layers : $S_{\rm 300K}$ mostly depends on the ratio Co^3+/Co^4+

• Low T : electronic correlations influence (S ~ γ T) + S(H) term

• Small κ

Solution of the block layers?
Influence on thermal conductivity?

Nanostructuration

2DEG SrTiO₃

2D electron gas in SrTiO₃

H. Ohta et al., Nat. Mater. 6, 129 (2007)

Nanostructuration

Na_xCoO₂ nanowires

Same technique as for $Ca_3Co_4O_9$ Lin et al., J. Phys. Chem. C 114, 10061 (2010)

ρ~ Ω.m?
Resistivity
overestimated by 3
orders of
magnitude by the
measurement
technique?

Figure 1. SEM image of NaCo₂O₄ nanofibers before and after annealing, synthesized with two different solvents; (a) and (b) methanolbased nanofibers before (a) and after (b) annealing; (c) and (d) waterbased nanofibers before (c) and after (d) annealing; scale bars in (a) and (c) represent 1 μ m, and in (b) and (d) represent 100 nm.

F. Ma et al., J. Phys. Chem. C 114, 22038 (2010)

Strong correlations + Size effects

Decoupling of resistivity and Seebeck?

J. Ravichandran et al., PRB85, 085112 (2011)

Thickness (nm)

Oxide modules

Oxide prototypes

1st prototype in 2000

One leg : 4.8 ×4.9 × 17.5 mm³

One pair : 7.91mW T_H = 987K ∆T = 552K

W. Shin et al., JJAP39, 1254 (2000)

Oxide prototypes

n : $Ca_{0.92}La_{0.08}MnO_3 / p : Ca_{2.75}Gd_{0.25}Co_4O_9$ 8 pairs 3 × 5 × 30 mm³

TABLE I. Thermoelectric power S, resistivity ρ , and power factor S^2/ρ of p and n legs used for fin-type device.

		S (700 °C)	$\rho~(700~^\circ\mathrm{C})$	$S^2/\rho~(700~^\circ{ m C})$
Materials	ρ -T	$\mu V/K$	$m\Omega \; cm$	$10^{-4} W m^{-1} K^{-2}$
$Ca_{2.75}Gd_{0.25}Co_4O_9 (p \text{ leg}) Ca_{0.92}La_{0.08}MnO_3 (n \text{ leg})$	Semiconducting Metallic	185 -120	7.8 6.6	4.8 2.2

TABLE II. Thermal conditions, open circuit voltage V_o , and maximum output power P_{max} for fin-type device with eight p-n couples.

Condition	T_h , °C	ΔT , °C	V_o , mV	$P_{\rm max}$, mW
a	477	235	550	19.8
b	580	290	694	31.8
с	672	335	838	46.5
d	773	390	988	63.5

 T_h : Hot side temperature.

 ΔT : Temperature difference.

$$T_h = 1046K, \Delta T = 390K,$$

P=63.5mW

I. Matsubara et al., APL 78, 3627 (2001)

$La_{0.9}Bi_{0.1}NiO_3 / Ca_{2.7}Bi_{0.3}Co_4O_9$

n : $La_{0.9}Bi_{0.1}NiO_3$ / p : $Ca_{2.7}Bi_{0.3}Co_4O_9$ 1 jonction : T_H = 1073K, ΔT = 500K, P = 94mW

140 paires $T_{H} = 1072K, \Delta T = 551K$

FIG. 4. (Color) Comparative photographs of the oxide module and a mobile phone, and a demonstration of charging a lithium-ion battery in the mobile phone. Red LED on the mobile phone indicates charging of the lithium-ion battery is in progress.

FIG. 3. Thermal resistance of the oxide module at T_H of ~723 K and ΔT of ~385 K. $R_I(\bullet)$, $V_O(\blacktriangle)$, and $P_{\max}(\blacksquare)$ normalized by the values of the first trial are plotted against the number of heating-cooling cycles.

R. Funahashi et al., APL 85, 1036 (2004) R. Funahashi et al., JAP99, 066117 (2006)

Comparison of modules

Manufacturing factor MF = R_{ideal} / R_{int} ,

Name	Materials	Туре	Nb Couple	Power (W)	MF
Funahashi et al.	Ca _{2.7} Bi _{0.3} Co ₄ O ₉ / La _{0.9} Bi _{0.1} NiO ₃	PN	1	0.03	0.15
Shin et al.	(Li) NiO / (Ba, Sr) PbO ₃	PN	2	0.034	0.3
Matsubara et al.	(Gd) Ca ₃ Co ₄ O ₉ / (La) CaMnO ₃	PN	8	0.089	0.82
Sudhakar et al.	Ca ₃ Co ₄ O ₉ / Ca _{0.95} Sm _{0.05} MnO ₃	PN	2	0.031	0.57
Present work	Ca _{0.95} Sm _{0.05} MnO ₃ / Ca _{0.95} Sm _{0.05} MnO ₃	Ν	2	0.016	0.15

Important to optimize the contacts quality!

S. Lemonnier, C. Goupil et al.

Devices

Modules and prototypes

JOURNAL OF APPLIED PHYSICS 109, 124509 (2011)

Monolithic oxide-metal composite thermoelectric generators for energy harvesting

Shuichi Funahashi,^{a)} Takanori Nakamura, Keisuke Kageyama, and Hideharu leki Research Center for Next Generation Technology, Murata Manufacturing Co., Ltd., 2288 Ohshinohara, Yasu, Shiga 520-2393, Japan

(Received 7 March 2011; accepted 11 May 2011; published online 27 June 2011)

Monolithic oxide-metal composite thermoelectric generators (TEGs) were fabricated using multilayer co-fired ceramic technology. These devices consisted of Ni_{0.9}Mo_{0.1} and La_{0.035}Sr_{0.965}TiO₃ as pand n-type thermoelectric materials, and Y_{0.03}Zr_{0.97}O₂ was used as an insulator, sandwiched between p- and n-type layers. To co-fire dissimilar materials, p-type layers contained 20 wt. % La_{0.035}Sr_{0.965}TiO₃; thus, these were oxide-metal composite layers. The fabricated device had 50 pairs of p-i-n junctions of 5.9 mm × 7.0 mm × 2.6 mm. The calculated maximum value of the electric power output from the device was 450 mW/cm² at $\Delta T = 360$ K. Furthermore, this device generated 100 μ W at $\Delta T = 10$ K and operated a radio frequency (RF) transmitter circuit module assumed to be a sensor network system. © 2011 American Institute of Physics. [doi:10.1063/1.3599890]

FIG. 1. Structure of the monolithic thermoelectric generator (TEG), based on multilayer ceramic capacitor (MLCC) technology. The p- and n-type layer printed insulators were stacked and co-fired.

Type n : SrTiO₃ dopé au La 450mW/cm² pour Δ T = 360K

Stability problems

Oxygen stoechiometry?

Oxides : can be synthesized in air or controlled atmosphere at 800°C – 1500°C

Perovskites

Type n : manganese oxides

Fig. 2. Thermogravimetric analysis measurements on heating and cooling in a 20% O₂/Ar gas mixture for perovskite $Sr_{0.8}Ca_{0.2}MnO_3$. Inset: Oxygen nonstoichiometry during heating the perovskite phases $Sr_{1-x}Ca_xMnO_3$ (x = 0.0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0) in oxygen at low temperatures. Filled squares denote temperatures at which an increased formation of oxygen vacancies is observed on heating (legend the same as for main panel).

B. Dabrowski et al., JSSC170, 154 (2003)

Thermal stability

Oxygen stoechiometry?

Fig. 1: Schematic illustration of the crystal structure of an ML cobaltoxide phase, $[(MO_{1\pm\omega})_{sm}]/(AO_{1\pm\omega})_{s}CoO_2$, consisting of two subsystems, CoO_2 and $AO_{1\pm c}(MO_{1\pm\omega})_{m'}AO_{1\pm c}$ that are incommensurate along the b-axis direction, but have the lattice parameters, a, c and β , in common.

Fig. 2 TG curves for Ca₃Co₃₉₅O_{9+δ} showing its deoxygenation and oxygenation characteristics. First as-air-synthesized Ca₃Co₃₉₅O_{9,24} is deoxygenated by heating (up to 750°C) and cooling in N₂ (—) and subsequently oxygenated by heating (up to 850°C) and cooling in O₂ (---). The mass of the sample was ~60 mg and the heating and cooling rates were 0.5°C/min.

Y. Morita et al., JSSC177, 3149 (2004)

N₂ annealing

Thermogravimetric + titration analysis

Synthesis and measurements conditions : ZnO

D. Bérardan, GdR Thermoélectricité 06-2010

D. Bérardan et al., GDR Thermoélectricité, Grenoble, juin 2010

D. Bérardan et al., GDR Thermoélectricité, Grenoble, juin 2010
Conclusion

ZT (n type) < ZT (p type) Thermal conductivity : coming from the lattice

n type oxides : degenerate semi-conductors
Seebeck described in a first approach by Mott's formula

• p type oxides

Seebeck coefficient : Major role of the spin and orbital term Importance of electronic correlations $S = -\frac{k_B}{|e|} ln(\beta \frac{1-x}{x})$

How to enhance ZT??

Survey Investigation of thermal conductivity

Solution and electronic correlations?

♦ Low dimensional structures

✤ Microstructures

♦ Anionic subsitutions (oxyselenides)

Collaborators

Laboratoire CRISMAT Wataru Kobayashi (Tsukuba), Hidefumi Takahashi (Nagoya), Antoine Maignan, Christine Martin, Denis Pelloquin, Olivier Perez

> Patrice Limelette, LEMA, Tours Julien Bobroff, Véronique Brouet, LPS Orsay

This work is supported by FP7 European Initial Training Network SOPRANO (GA-2008-214040)

