Fuels from Sunlight, Water and Carbon Dioxide: A Thermochemical Approach

ICMR Summer School August 19-28, 2012; Santa Barbara, CA

Using the Sun to Make Fuels

Solar electricity
 + electrolysis

• Separate components

Photolysis

 $H_2O \rightarrow H_2 + \frac{1}{2}O_2 \qquad CO_2 \rightarrow CO + \frac{1}{2}O_2$

- Material corrosion
- Low CO₂ solubility
- Poor product selectivity
- Non-aqueous electrolyte
- Precious metal catalysts, poor rates
- Poor use of solar spectrum

• Thermolysis

- Reaction at > 4,000 °C
- Requires separation

Direct Thermolysis

- Slightly easier for CO₂ dissociation than H₂O
- But still extremely challenging \rightarrow multi-step reaction schemes

Metal Oxide Solar Thermochemical Cycle

Thermal Reduction/ Oxygen Release Oxidation/Fuel Production $M = \frac{1}{T_H} O_2$

- Integrated solar capture and fuel production
- Oxygen and fuel produced in separate steps
- Challenges due to structural change & volatilization
- Fuel largely limited to hydrogen

State-of-the-Art

- Difficult Zn capture
 - Quench step required
- Slow oxidation kinetics $Zn + H_2O \rightarrow ZnO + H_2$

- Solid state transformation
 T_H ~ 1400°C
- Two distinct solid phases

- Slow kinetics
 - Slow oxygen diffusion
 - Slow surface reaction
- Kinetics worsen
 - Loss of porosity (sinter)

Alternative Thermochemical Cycle

Metal oxide releases/incorporates oxygen No phase change, large nonstoichiometry range Rapid kinetics: bulk diffusion, surface reaction

Ideal candidate: Ceria, $CeO_{2-\delta}$

Ceria thermochemical cycle

 $CeO_2 \rightarrow CeO_{2-\delta} + \frac{\delta}{2}O_2 \qquad \qquad \delta H_2O + CeO_{2-\delta} \rightarrow \delta H_2 + CeO_2$

- Ceria thermodynamics well-known
- Extremely refractory: $T_m = 2477 \circ C$, non-volatile

Outline

- Brief introduction

 - Thermodynamics
 Kinetics
 Preliminary evaluation of material requirement
- Experimental proof of principle
 - Water and carbon dioxide dissociation
 - Benchtop electric furnace \rightarrow solar simulator
- Revisiting

 - Kinetics
 - measurements
- Defining Efficiency

$Ce_2O_3 - CeO_2$ Phase Diagram

Thermodynamic Oxidation State

Can compute δ (T, pO_2) from material thermodynamic parameters

Predicted Oxygen Release / Fuel Production

Predicted Oxygen Release / Fuel Production

Kinetics of Reduction and Oxidation

Progressive Demonstration

- Conventional Electric Furnace
 - Analysis by gas chromatography (quantitative)
 - Moderate temperatures, slow ramp rates
 - Surrogate reduction step using hydrogen
- IR Imaging Furnace
 - Analysis by mass spectrometry (rapid)
 - High temperatures and high ramp rates
 - Reduce under realistic gas conditions
- Solar Simulator Furnace
 - Almost direct fuels from sunlight
 - Exhaust gases to gas chromatograph
 - Challenging thermal design

Chueh & Haile, Phil. Trans. R. Soc. 368, 3269-3294 (2010).

Rate Limiting Step

LAND IN THE OFFICE AND INTERVAL A

Catalyst improves kinetics \rightarrow surface limited process

Chueh & Haile, Phil. Trans. R. Soc. 368, 3269-3294 (2010).

 $pH_2O = 0.064 \text{ atm}, FR_{tot} = 380 \text{ sccm } g^{-1}_{SDC}$

 $pCO_2 = 0.032$ atm, FR_{tot}= 300 sccm g⁻¹_{SDC}

Complete utilization of ceria non-stoichiometry for fuel production

SDC = samaria doped ceria

Chueh & Haile, Phil. Trans. R. Soc. 368, 3269-3294 (2010).

Complete utilization of ceria nonstoichiometry

Measured Fuel Composition

100% syngas selectivity – no methane produced

Producing Methane?

Transient Carbon Deposition on Ni

Operating on Photons Swizterland in March

Collaboration with Aldo Steinfeld, ETH Zurich and the Paul Scherer Institute

Under Simulated Solar Radiation

CO₂ dissociation

Under Simulated Solar Radiation

H₂O dissociation

Heat losses in solar reactor have major detrimental impact on efficiency

Actual Reactor Efficiency

$$\eta = \frac{r_{fuel} \Delta H_{fuel}}{P_{solar} + r_{inert} E_{inert}}$$

Estimate at 0.5 to 1%

- Reactor heat-up is slow $\Rightarrow P_{solar}$ is large
 - Heat loss through insulation
 - Re-radiation losses through quartz window
- Material keeps up with heating rate
 - Immediate efficiency improvements from better reactor design
 - No need to enhance surface reaction rates
- Material with lower temperature cycling
 - Would ease requirements on reactor design

$$\eta = \eta_{solar-thermal} \times \eta_{thermal-fuel} = \eta_{solar-thermal} \times \frac{285.8kJ}{\Delta H_{input}}$$
$$\Delta H_{input} = \text{Boil and heat} + \text{Heat ceria} + \text{Reduce}$$
$$\text{water to } T_{L} \qquad \text{from } T_{L} \text{ to } T_{H} \qquad \text{ceria}$$

Influence of Cycling Parameters

Analysis ignores potential of heat recovery

Maximal Efficiency

Increasing T_H increases fuel output per cycle, increases efficiency

Diminishing returns due to "fixed costs" on a per mole fuel basis

Influence of Zr on Efficiency

~ 40 MT world reserve

Conclusions & Challenges

Conclusion: Ceria based materials work *very* well

Chemical Challenge

- Design of new materials
 - Operability at lower temperature
 - Wider nonstoichiometry range
 - Maintain structural stability, non-volatility?
- Forays into ZrO₂-CeO₂ system
 - Zr enhances reducibility, but not necessarily fuel productivity
 - Zr dramatically lowers oxygen chemical diffusivity

Engineering Challenges

Reactor design: solar, thermal, fluid, mass transfer

Efficiency requires high degree of heat recovery

Acknowledgments

William, Danien, Yong, Chirranjeevi (BG)

Aldo Steinfeld & students

Funding

- National Science Foundation
- Gordon and Betty Moore Foundation
 - Caltech Center for Sustainable Energy Research
- eSolar (Philip Gleckman)

ARPA-e (just started)