Materials 218/Chemistry 277: Assignment 4

Ram Seshadri (seshadri@mrl.ucsb.edu)

Due Tuesday February 8th, 2011

This is last year's midterm

1. The compound whose structure is given below is a superconductor with a transition temperature of 8.5 K [He *et al. Nature* **411** (2001) 54]. Examine the structural information provided below and answer the questions that follow:

Space group $Pm\bar{3}m$ (No. 221: $P4/m\bar{3}2/m$) $a=3.8122\,\text{Å}$.

Atom	Wyckoff	\boldsymbol{x}	y	z
Mg	1a	0	0	0
Ni	3c	$\frac{1}{2}$	$\frac{1}{2}$	0
C	1b	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$

Note: You should NOT require space group tables.

(a)	What is the formula of the compound?	[1]
(b)	Explain P , $4/m$, $\bar{3}$, and $2/m$ in the complete space group symbol. Sketch the rotation axes on a cube.	[2]
(c)	Sketch the various sections in the structure.	[1]
(d)	What is the structure type formed just from Mg and C? Sketch the whole unit cell of this structure	
	with just Mg and C.	[1]
(e)	Can you interchange the positions of Mg and C without changing the structure (Yes or No)?	[1]
(f)	What is the coordination of Mg in terms of Ni (distance and number of neighbors)?	[1]
(g)	What is the coordination of C in terms of Ni (distance and number of neighbors)?	[1]
(h)	Tile the layer (at least 3×3) at $z=0=1$ with only Ni indicated, and identify an fcc sublattice.	
	What would the unit cell edge of the fcc lattice be in terms of $a = 3.8122 \text{Å}$?	[1]
(i)	The answer is ?	[1]

2. In the Figure (a) above:

(a) Sketch the unit cell boundary.	
(b) What is the ratio of the two motifs in the structure?	[1]
(c) What kind of 2D lattice is depicted?	[1]
(d) What is the plane group?	[1]
3. In the Figure (b) above:	
(a) What is the ratio of the two motifs in the unit cell?	[1]
(b) What is the highest order rotation axis that can be identified? Locate its position(s).	[1]
(c) Locate mirror and glide planes if present, in the unit cell.	[2]
(d) What is the plane group?	[1]

4. Electrostatic valence rule:

(a) The electrostatic valence rule of Pauling states:

$$\Sigma s = -V_{-}$$
 and $s = V_{+}/Z$

where s is the bond valence, V_+ is the charge (valence) of the cation, V_- is the charge of the anion, and Z is the coordination number of the cation. If Z=4 in amorphous SiO_2 , how many Si is each O bonded to. Sketch the bond valence net. Note charges: Si^{4+} and O^{2-} .

[2]

(b) Describe the Si–O network in amorphous SiO₂ with a sketch.

- [2]
- (c) The addition of H₂O to SiO₂ (as happens in certain hydrothermal processes in geology) results in the Si–O–Si network of silica being broken. Use electrostatic valence to determine the H₂O:SiO₂ ratio required so that all SiO₄ tetrahedra are *isolated*, *ie.* there remain no Si–O–Si linkages. Sketch the bond valence net of this hydrated species.
- [2]
- (d) If Z were 6 for Si in SiO_2 (giving SiO_6 octahedra as in mineral stishovite SiO_2) how many Si would O be bonded to ? Sketch the bond valence net.
- [2]
- (e) TiN crystallizes in the rock-salt structure: If TiN comprises Ti^{4+} and N^{3-} , does the electrostatic valence rule apply? What is wrong, the rule or the assigned charge? [2]