Materials 218/Chemistry 277: Assignment 4 ### Ram Seshadri (seshadri@mrl.ucsb.edu) ### Due Tuesday February 8th, 2011 ### This is last year's midterm 1. The compound whose structure is given below is a superconductor with a transition temperature of 8.5 K [He *et al. Nature* **411** (2001) 54]. Examine the structural information provided below and answer the questions that follow: Space group $Pm\bar{3}m$ (No. 221: $P4/m\bar{3}2/m$) $a=3.8122\,\text{Å}$. | Atom | Wyckoff | \boldsymbol{x} | y | z | |------|---------|------------------|---------------|---------------| | Mg | 1a | 0 | 0 | 0 | | Ni | 3c | $\frac{1}{2}$ | $\frac{1}{2}$ | 0 | | C | 1b | $\frac{1}{2}$ | $\frac{1}{2}$ | $\frac{1}{2}$ | *Note*: You should NOT require space group tables. | (a) | What is the formula of the compound? | [1] | |-----|---|-----| | (b) | Explain P , $4/m$, $\bar{3}$, and $2/m$ in the complete space group symbol. Sketch the rotation axes on a cube. | [2] | | (c) | Sketch the various sections in the structure. | [1] | | (d) | What is the structure type formed just from Mg and C? Sketch the whole unit cell of this structure | | | | with just Mg and C. | [1] | | (e) | Can you interchange the positions of Mg and C without changing the structure (Yes or No)? | [1] | | (f) | What is the coordination of Mg in terms of Ni (distance and number of neighbors)? | [1] | | (g) | What is the coordination of C in terms of Ni (distance and number of neighbors)? | [1] | | (h) | Tile the layer (at least 3×3) at $z=0=1$ with only Ni indicated, and identify an fcc sublattice. | | | | What would the unit cell edge of the fcc lattice be in terms of $a = 3.8122 \text{Å}$? | [1] | | (i) | The answer is ? | [1] | ## 2. In the Figure (a) above: | (a) Sketch the unit cell boundary. | | |---|-----| | (b) What is the ratio of the two motifs in the structure? | [1] | | (c) What kind of 2D lattice is depicted? | [1] | | (d) What is the plane group? | [1] | | 3. In the Figure (b) above: | | | (a) What is the ratio of the two motifs in the unit cell? | [1] | | (b) What is the highest order rotation axis that can be identified? Locate its position(s). | [1] | | (c) Locate mirror and glide planes if present, in the unit cell. | [2] | | (d) What is the plane group? | [1] | #### 4. Electrostatic valence rule: (a) The electrostatic valence rule of Pauling states: $$\Sigma s = -V_{-}$$ and $s = V_{+}/Z$ where s is the bond valence, V_+ is the charge (valence) of the cation, V_- is the charge of the anion, and Z is the coordination number of the cation. If Z=4 in amorphous SiO_2 , how many Si is each O bonded to. Sketch the bond valence net. Note charges: Si^{4+} and O^{2-} . [2] (b) Describe the Si–O network in amorphous SiO₂ with a sketch. - [2] - (c) The addition of H₂O to SiO₂ (as happens in certain hydrothermal processes in geology) results in the Si–O–Si network of silica being broken. Use electrostatic valence to determine the H₂O:SiO₂ ratio required so that all SiO₄ tetrahedra are *isolated*, *ie.* there remain no Si–O–Si linkages. Sketch the bond valence net of this hydrated species. - [2] - (d) If Z were 6 for Si in SiO_2 (giving SiO_6 octahedra as in mineral stishovite SiO_2) how many Si would O be bonded to ? Sketch the bond valence net. - [2] - (e) TiN crystallizes in the rock-salt structure: If TiN comprises Ti^{4+} and N^{3-} , does the electrostatic valence rule apply? What is wrong, the rule or the assigned charge? [2]