Materials 218/Chem277: Assignment 4

Ram Seshadri (seshadri@mrl.ucsb.edu) Due date: February 11, 2009

This is a sample midterm exam.

1. The structure of a half-Heusler compound formed from Ti, Co, and Sb is described: Space group $F4\overline{3}m$ (No. 216) a=5.888 Å.

Atom	Wyckoff Position	\boldsymbol{x}	y	z
Ti	4a	0	0	0
Co	4c	1/4	1/4	1/4
Sb	4b	1/2	1/2	1/2

Note: You should NOT require space group tables.

- (a) What is the formula of the compound?
- (b) How many atoms of each kind are there in the unit cell?
- (c) Sketch the various sections in the structure.
- (d) Describe the structure in terms of interpenetrating lattices.
- (e) How is the structure related to rock salt?
- (f) How is the structure related to zinc blende?
- (g) What is the coordination of Co in terms of Sb?
- (h) What is the coordination of Ti in terms of Sb?
- (i) Can you interchange the positions of Ti and Sb without changing the structure?
- (j) What would the formula of the compound be for the same atom positions, perhaps different Wyckoff numbers, but in the space group $Fm\bar{3}m$ (the space group of NaCl and CaF₂) ?
- 2. Sketch the cubic perovskite $BaZrO_3$ (Ba^{2+} , Zr^{4+} , O^{2+}) with Ba in the corners and Zr in the center of the cube. How many Ba and how many Zr are each O bonded to? Verify that the rules of electrostatic bond valence are obeyed by considering all bonds coming to oxygen from the cations (remember its Ba^{2+} , Zr^{4+} , and O^{2-}).
- 3. The questions (a), (b), (c), and (d) correspond to the figures below:

- (a) Identify the line group.
- (b) Identify the line group, including color.
- (c) Identify all the mirrors and all the rotations (normal symmetry and color symmetry).
- (d) Identify all the mirrors and all the rotations (normal symmetry and color symmetry).
- (e) Why can't a square lattice be centered (show a sketch)?
- (f) Can a square lattice with the symmetry 4mm support a dipole moment? [A dipole moment means the centers of positive and negative charges in the unit cell do not coincide].
- (g) What kind of operation (in 2D) is signified by (0,0)+ and $(\frac{1}{2},\frac{1}{2})+$?
- (h) What kind of operation (in 3D) is signified by (0,0,0)+; $(0,\frac{1}{2},\frac{1}{2})+$; $(\frac{1}{2},0,\frac{1}{2})+$ and $(\frac{1}{2},\frac{1}{2},0)+$?
- (i) True or false: In 2D systems, 3 and 6-fold symmetries are compatible with glide planes?
- (j) What new classes of symmetry operations are encountered on going from 1D and 2D, to 3D? Sketch at least two.