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Abstract—The bond valence method (BVM) is one of modern methods for predicting bond lengths in crystal
structures based on the modified second Pauling rule, which requires the exact fulfillment of the valence balance

with due regard for the empirical bond valence-bond len
of the mathematical apparatus of the method, its limitati

gth relations. The review includes the detailed analysis
ons, and also its program implementation. Various mod-

ifications of the BVM procedure suggested by the authors are analyzed. A number of examples of modeling are
given. In most of the cases, the error in prediction of interatomic distances does not exceed 5-8%. Much atten-
tion is also given to other possible applications of the method in crystal chemistry. Among them, of great impor-
tance is the prediction of coordination-polyhedron distortion based on the use of the distortion theorem, the
determination of the valence of atoms from the corresponding structural data, the refinement of the bond net-
work, and also the analysis of geometrical strains in structures,
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INTRODUCTION

It is well known that all the main notions used for
the description of chemical bonding between atoms
used in modern theoretical crystal chemistry, such as
those of atomic and ionic radii, polarizabilities, elec-
tronegativities, etc. [1], are not rigorously determined
constants but rather some effective quantities deter-
mined and evaluated by various methods and estimates.
However, this does not hinder numerous successful
applications of these notions under the condition of
their consistency and the fulfillment of some important
requirements (e.g., the sums of atomic radii should be
as close as possible to the values of the measured inter-
atomic distances).

Among most popular crystallochemical techniques,
the special attention is recently given to the bond-
valence model, which allows the interpretation and pre-
diction of bond lengths for most inorganic crystals and
minerals. The present review is aimed at closing the gap
in Russian publications on inorganic chemistry, which,
until today, have not given sufficient attention to this
important concept.
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STATE-OF-ART AND PERSPECTIVES OF THE BOND-VALENCE MODEL

I. INTERATOMIC DISTANCES AND BOND
VALENCE

1.1 Modification of the Second Pauling Rule

The most well-known rule of the five Pauling rules
describing the structure of ionic crystals is the second
one,

Vjszvi/vi = Zs,-, (L

which postulates that in a stable structure, the charge
(valence) V; of each anion has a tendency to be compen-
sated with the valence strengths s; = V;/v (where v is the
coordination number) of all the cations forming a coor-
dination polyhedron around the given anion. The sec-
ond Pauling rule is rigorously fulfilled only for simple
highly symmetric structures with undistorted chemi-
cally-homogeneous coordination polyhedra. In most
instances, this rule is only an approximate condition
deviating from the rigorous equality within +10%.
Indeed, for oxygen atoms in silicate structures, the
deviations from (1) are usually within 1/6 of the
valence unit, in other words, the total sum of the
valence strengths of cations does not exceed 1.8-2.2.

However, even for stable synthetic compounds, the
deviations from postulate (1) can attain 40% and, for
less stable compounds, even 50%. Thus, the bridge
oxygen atom in a disulfite S,0; group is “oversatu-
rated” (by one valence unit). In this situation, the sec-
ond Pauling rule becomes somewhat indeterminate. To
confirm its validity one should invoke the notion of the
valence strength described by (1). The dependence
between the value of the valence strength s and the
bond length R was first indicated in the early fifties
[2, 3]. In 1970, G. Donnay and R. Allmann [4] sug-
gested to use the notion “bond valence” instead of the
“valence strength” suggested by Pauling. Bond valence
and bond length are related by the inverse power rela-
tionship

sy = (Ry/R)™, )

where N and R, are the empirical constants, with R,
being correspondent to the bond length having a unit
valence (s; = 1). This relationship proved to be more
appropriate than the linear [5] and the parabolic [6] cor-
relations between the bond length and the deviation As
from the Pauling valence strength. The values of R, and
N were empirically determined elsewhere [7-10].

Another expression for the dependence s(R) sug-
gested in [11, 12] has the exponential form:

s; = exp[(Ry;—R;)/bl, 3)

Y
where, similar to (2), the quantity R, has the sense of a
unit valence (s; = 1), whereas the parameter b varies
within a narrow range from 0.32 to 0.48 A. We should
like to remind here that a similar logarithmic expres-
sion for the dependence between the length R and the
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order n of the C—C bonds was suggested by Pauling as
far back as 1947 [13]. Pauling determined the empirical
value of b as b = 0.31 A and assumed that the logarith-
mic expression should also be valid for various cova-
lent and metal crystals. Such a close correspondence
between the dependences s(R) and n(R) suggested by
Pauling is explained by the fact that, similar to the bond
order, the bond valence can be interpreted as numbers
of electron pairs per bond [14].

Later, it was also assumed that b can be equated to
the average (universal) value 0.37 A [15]. Then, equa-
tion (3) has only one empirical parameter—the length
of the unit-valence bond, R;. The values of this param-
eter for various bonds were determined by processing
numerous empirical data from the Inorganic Crystals
Structure Database [16] tabulated in [15, 17]. It is
believed that the accuracy of the R, evaluation is about
0.02 A, although for many oxides and fluorides this
accuracy should be somewhat higher [17]. Thus, the
model under question can be used for predicting bond
lengths with an error not exceeding several hundredths
of angstrom. It is important that the values of the
parameter R, calculated by (2) and (3) are very close.
These values for various atomic pairs are indicated in
Appendix 1.

One can see that with an increase of the ordinal
number of an element within a group of the Periodic
System, the value of R; noticeably increases. As was
shown in [13, 18], the values of R, can be represented
as sums of covalent radii with due regard for the correc-
tion for different electronegativities of the bonded
atoms.

As a result, modifying the second Pauling rule,
I.D. Brown [10] obtained the bond-valence sum rule
(BVS). Thus, equation (1) takes the form

Vj = Zsij(Rij)s 4)

in which the approximate equality is changed for the
exact one, and the Pauling valence strength s; is
changed for the bond valence (BV) s; Moreover, it
should be emphasized that, unlike (1), equation (4)
should be rigorously fulfilled for both cations and
anions.

Another important remark reduces to that, within
the framework of the bond-valence model, the terms
“cation” and “anion” differ in that the former are more
electropositive and the latter are more electronegative
atoms forming chemical bonds. These bonds are not
necessarily ionic. The model is equally applicable to all
inorganic compounds including those characterized by
metallic bonding [18]. The “experimental” s; values
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Fig. 1. Correlation between the bond len gth R and the bond
valence s illustrating the geometric proof of the distortion
theorem,

can be calculated from the experimental bond lengths.
The measure of the difference between the “experimen-

tal” valence ZSU and the expected value Vj,

AV, = V= Y'sy (5)

can be used for calculating the reliability factor of the
structure (the value AV; for all j atoms in the formula
unit):

DAV) = (AW, ©)

The experimental errors in the determination of the
atomic coordinates and bond lengths can result in the
factor D equal to about one valence unit. Higher values
of this factor indicate that either the structure determj-
nation is unreliable or the crystal under question is
unstable.

1.2 Distortion Theorem

If the arrangement of the atoms in the crystal struc-
ture obeys condition (4), then an important distortion
theorem [19, 20] is valid. The theorem states that any
deviation of bond lengths from their average value
results in an increase of the average bond length under
the condition that the average bond valence (or the sum
of bond valences) remains constant. This theorem was
proved by Brown who proceeded from the geometrical
form of the bond length-bond valence dependence
[19, 20] (Fig. 1).

It is seen from Fig. 1 that an increase of the valence
5o of one of two initially equivalent bonds by As and a
decrease of the second bond by —As elongates the sec-
ond bond length to a larger extent than it reduces the
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first one, i.e., Ry~ Ry > Ry — R, . Thus, the average bond
length (R, + R,)/2 increases.

The distortion theorem can readily be proven in the
analytical form. With this aim, determine the slope of
the curve s(R) by differentiating equation (3):

R - Ry
dsy/dR;; = —(1/b)exp(—‘54’) = ~(1/b)sy. (7)

First, consider the chain B~A-B consisting of two
equivalent A-B bonds which are characterized by the
bond valence s and the bond length R. Then, we assume
that both bonds change their lengths and valences, but
in such a way that the total sum of the bond valences
remains constant

25 +As+As' = 2s,
so that

As = -As'.

Thus, one can write for a distorted chain of the B-
A-B' bonds

$(A-B) = s+ As and R(A-B) = R+AR,
$(A-B) = s+ As' and R(A-B") = R+ AR

Now, assume that As > 0. Then, obviously, AR < 0
and AR' > 0. Proceeding to the finite differences, we
obtain from (7):

As = —(1/b)(s + As)AR,
~As = -(1/b)(s - As)AR'.
Summing the two above equations, we have
AR+ AR = (As/s)(AR'/AR). 8)

Taking into account that As/s > 0 and (AR' - AR) > 0,
we can conclude that

AR+ AR >0.

In other words, as a result of distortioh, the average
bond length, R,, = (R + R')/2, increases.

Now consider the structural unit or a polyhedron
AB,, Let this polyhedron be distorted in such a way that
it becomes possible to divide » bonds into two groups,
V =V, +V,, containing the bonds of lengths R, and R,,
respectively. The corresponding differences between
the bond valences and the bond lengths between these
two groups of bond valences and lengths and those for
a regular polyhedron are As,, As, and AR, AR, respec-
tively. If the total sum of the valences remains constant,
the following obvious condition should be fulfilled:

AS2 = —'(Vl/VZ)Asl.

If we assume that As; > 0, then AR, <0and AR, > 0.
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In terms of the finite differences, we have

v,As, = —(v,/b)(s + As;)AR,,

V,As, = —(v,/b)(s + As,)AR,.

Summing up the above equations, we obtain
VIARI +V2AR2 = VI(ASI/S)(ARZ_ARI). (9)

At As;>0and (AR, — AR)) > 0, we arrive at the con-
dition

VAR, +V,AR, > 0.

This signifies that upon polyhedron distortion, the
average bond length increases by the value AR, =
(VIARl + VzARQ,)/n.

Eina]ly, let the coordination of a certain central atom
be distorted in an arbitrary way, i.e., let As;, As,, ... As,
be positive and As,,, ... As, be negative, so that

Z:’ As; = 0. Obviously, the corresponding changes in

the bond lengths, i.e., AR}, AR, ... AR, are negative,
whereas AR, , {, ... AR, are positive. In other words, the
bond lengths of the first group are reduced, whereas the
bond lengths of the second group are elongated.

Thus, the average values As,, = 2;’=1Asi /n and

Asy = 2:; .1 As;/(v — n) obey the relationship
nAs,, = (V—n)As' if the sum of the valences is constant.

The average change in the reduced bonds equals

AR, = ZL , AR; /n and the average change in the elon-
gated bonds equals AR,, = EL 1 AR [(v—n). Then,
the similar reasoning leads to a conclusion that distor-
tion results in an increase of the average bond length,
ie.,

[nAR,, + (V—n)ARL1/v >0, (10)

The distortion theorem has several corollaries:

(a) If an atom is placed into a too large void, so that
the average bond length cannot satisfy the BVS equa-
tion (4), then the sum of bond valences increases
because some bonds become shorter and some other
ones become longer, i.e., because of the displacement
of the atom from the void center accompanied by a
reduction of the effective coordination number. A good
example here is the high-pressure phase of magnesium
silicate MgSiO, with the perovskite-like structure.
A magnesium atom is too small to occupy the center of
a cuboctahedral void with the coordination number 12.
Therefore, the perovskite-like structure experiences
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strong orthorhombic distortion (a = 4.780, b = 4.933,
and ¢ = 6.902 A), and, in fact, the magnesium atom is
located in a distorted eight-vertex polyhedron.

(b) Since high pressures give rise to crystal com-
pression, i.e., a reduction of the average bond length, an
increase in the pressure reduces the distortion of the
coordination polyhedron. Indeed, at higher pressures,
the orthorhombic distortion of the MgSiO; “perovs-
kite” structure becomes rather feebly marked [21].

(c) Since the nearest neighbors together with some
next-nearest neighbors can always be considered as
strongly distorted nearest environment characterized
by a somewhat higher coordination number, an
increase in the pressure would stabilize this higher
coordination. Thus, the structural transformation of
ilmenite (the high-pressure phase of MgSiO; with the
coordination numbers of both Mg and Si being six) into
the structure of distorted perovskite (with the coordina-
tion numbers of magnesium and silicon being eight and
six, respectively) at higher pressures can be considered
as the transition from 6 + 2 shortest bonds in the
ilmenite structure to 8 shortest bonds in the orthorhom-
bic perovskite structure. Eight shortest Mg-O bonds in
the ilmenite structure range within 1.99-3.08 A,
whereas eight shortest Mg-O bonds in the perovskite
structure range within a much narrower interval, 2.06—
2.47 A, thus indicating a much weaker distortion. The
bond length averaged over eight shortest bonds in the
ilmenite structure (2.32 A) considerably exceeds the
lengths of analogous eight bonds in the latter structure
(2.21 A), although the individual bonds in the eight-
fold coordination of the perovskite-like structure are
longer than the corresponding bonds in the six-fold
coordination (octahedron) of the ilmenite structure.

1.3 Bond Length Correlations in Coordination
Polyhedron

Upon simple transformations of the equation relat-
ing the bond valence and the bond length, one can
establish the correlations or relationships between indi-
vidual bond lengths in a coordination polyhedron [22].
We assume that the polyhedron is distorted in such a
way that one can divide all the bonds into two groups
with the bond lengths R; and R;, with the numbers of
bonds in each group being v, and v; (V; = v, + V),
respectively. With due regard for (2) and (3), equation
(1) takes the form

R,-R, R,-R;
V, = vkexp( ‘b 'k)+v,exp(—1b——'l) (11)
or

V, = Vi(Ru/R) ™ +Vi(Ry/R) ™. (12)
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Fig. 2. Correlation between the K~O bond length at various values of the Vi/V ratios (indicated at each curve), (a) At the total coor-
dination number v ranging from 10 to 8; (b) at the total coordination numberv = 10,

Upon some additional transformations, we have

~R.
V,‘—v,exp(R1 7 ”)

(13)
R1~Ri1 "
(_l)n Vi—vlexp( b )
v, N Vi R] -
Iy
k I il. y (14)
NV =D..(N=m+ 1)V V™™
= z - R” - RI .
m! Vk Vlc

m=0

The analysis of these relationships shows that the
dependence of R, on R; is a monotonically decreasing
one and is determined by only two factors—the ratio
V/v;and the valence V; of the atom located in the center
of the coordination polyhedron (Fig. 3).

The corresponding experimental curves were con-
structed by Biirgi [23] for the I-I-T', S-S-S', Mo-O-
Mo, and some other chains. It is seen from Fig. 4 (the
I-I-T' chain) that the experimental dependences coin-

cide with the theoretical ones calculated by equations
(13) and (14).

The most often encountered distortion of the octahe-
dral coordination of transition metal atoms is an octa-
hedron elongated in the direction of the fourfold axis.
All the bonds are divided into two axial (R,) and four
equatorial (R,) bonds (the approximate symmetry D).
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Similar experimental dependences were also studied by
Gaso [24-26] and Hathaway [27]. They are well
described by the model in question [22]. Figure 5
shows that the data predicted on the basis of the bond-
valence method are consistent with the experimental
data for another case of a distorted octahedron.

The distortion of the tetrahedral coordination was
represented in the coordinates AR, = R; - Ry, AR,=
R;; — R, with the bond angle 6 [23-28]. The same data
can also be represented in the AR,, AR, coordinates,
Then, one can readily see that the dependences AR, =
SIAR,) describing the distortion of a tetrahedron (the
approximate symmetry Cs,) and an octahedron (the
approximate symmetry D,,) are linear.

Consider the causes of such a behavior of the bond
lengths. Transforming equation (11), we obtain

v.[ AR
AR, = bln[l ——k(e ’ -1]}

where AR, = R; - Ry and AR, = R; — R;. Then it
becomes clear that the correlation sought is indepen-
dent of the central-atom valence V; and the unit distance
R, but is determined, for each coordination number,
only by the distortion type, ie., by its symmetry, or,
more precisely, by the v,/v, ratio.

Assuming that v, < Vi, We obtain

(15)

AR ~—YAAR,. (16)
Vi
In other words, an increment in the bond length
taken with the opposite sign is proportional to the ViV,
ratio. It is seen from Fig. 6 that the experimental depen-
dences are really linear.

Vol. 44 No. 4 1999




STATE-OF-ART AND PERSPECTIVES OF THE BOND-VALENCE MODEL 691
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Fig, 3. Correlation between the Mn—O bond lengths at dif-
ferent valences of the central Mn atom (indicated at each
curve), Vv, = 2/4, v =6.

Moreover, the tangent of the slope angle of the cor-
relation line for the octahedral coordination is set by the
relationship —v,/v, = —1/2, which is quite consistent
with the experimental value of the slope angle equal to
—0.43. For the tetrahedral coordination, —v,/v, = —1/3,
and the slope angle equals —0.30.

The variety of coordination-polyhedron distortions
is not exhausted by the division of all the bonds into
two groups. For the coordinations with c.n. = 6, it is
often possible to distinguish three, four, and more
groups of bonds with close bond lengths. In the general
case, the use of the BVS equation, allows one to write
the following expression

c R - R,
V, = ZV,,exp(-—l—b—ﬂ’),

n=1

which, in turn, allows one to represent the bond length
of a certain bond group as a function of bond lengths of
other groups and, thus, obtain an equation analogous to
(13). Such an equation provides the prediction of the
distortion of coordination polyhedra with an arbitrary
coordination number v; and an arbitrary ratios of the
particular coordination numbers V;/Vo/V3/Vy/.../V,.

The number of groups of bonds contained in the
total coordination number determines the “dimension-
ality” of the data obtained. For two groups of bonds, the
relation for the bond lengths can be represented by a
plane curve (the two-dimensional object), for three
groups, by the three-dimensional surface, etc. An
- example of such modeling is shown in Fig. 7.

Despite the fact that the bond-valence method suc-
cessfully describes the mutual dependence of all the
bond lengths in the coordination polyhedra, the funda-
mental causes of this phenomenon are not quite clear.
Obviously, they originate from the tendency of any
atomic grouping to attain the state with the minimum
energy. Thus, the dependences considered above can be
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Fig. 4. Correlation of bond lengths in the I-I-I chain.

interpreted in terms of the potential-energy surfaces.
This approach was substantiated by Boca [29] and
other researchers.

1.4 Semiempirical Basis of the Model

The first energy analysis of the nature of the inverse-
power dependence of the bond length on bond valence
(2) was performed by Brown and Shannon [8] on the
basis of the Born-Landé equation of the lattice energy
of an ionic crystal

J ij ijs

(17)
where A is the Madelung constant, B and n are the

repulsion parameters, V;; is the first coordination num-
ber, and R,-j is the shortest interatomic distance.

Ri(Sb-Cl)(x3), A
3.6

32F

0 I L J
20 24 28 32 36
R;(Sb—Cl)(x3), A

Fig. 5. Correlation of bond lengths in a distorted six-fold
coordination of SbClg (vi/v; = 3/3).
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Fig. 6. Linear correlation of the increments in bond lengths
during distortion of the tetrahedral and octahedral coordina-
tion. Empty squares and circles relate to AICly and POy,
respectively. Dark squares and circles relate to CuF; and
CuOg, respectively.

Using the condition of crystal equilibrium,
(dU/dR)g, = 0, (18)

where R; is the equilibrium value of the interatomic dis-
tance, they determined the valence of the ijth bond as
si = u/Vy = (Bn/Az)R;™". (19)

For the given value of zjand a certain structural type
(A = const), one can write

1~
s = constR;™",

(20)

T
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Fig. 7. Correlation of three
and Rj (three bonds).
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For the unit bond (s; = 1, R; = R,), we have:

1 = constR; ™", (1)
It follows from (20) and (21) that
S = (Rij/Rl)_(n—l)- (22)

At N = n - 1, the above result coincides with (2). It
should be remembered that the empirical values of n
(ranging within 5-12) increase with the number of
electrons, i.e., with an average atomic number of the
bond partners. Usually, the average n value is taken to
be nine. The typical N values for a large number of
oxides range from four to eight [9] and show the ten-
dency of increasing with an increase of the atom size
and the coordination number, i.e., with an increase of
the average atomic number. However, the average N
value (N = 6) is somewhat lower than it was expected
(N=n-~1=38).

The exponential Born-Mayer repulsion potential,
U(RU) = —Az,-zj/R,-j+Vij'yexp(-—R,-j/p), (23)

(Where y and p are the repulsion parameters) was used
to substantiate equation (3) [30-32]. It was found from
the equilibrium condition that b = p(1 + 2p/R)) [31, 32].
Indeed, the universal empirical b-value, b = 0.37 A,
somewhat exceeds the typical value of the parameter )
for ionic crystals (0.30-0.34 A).

Equations of type (3) were also substantiated with
the aid of the modified Morse function [33], which
describes the dependence of the potential energy of a
covalent bond on the distance. Recently, it has been
shown [31, 32] that a more complicated (combined)
potential function appropriate for the bonds of the
intermediate ionic~covalent nature also yields the same
result. Thus, an important empirical conclusion that the
bond-valence method can be applied to any chemical
bond irrespectively of its nature has been proven. Ana-
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groups of bond lengths in the distorted octahedral coordination of AlFs: Ry (one bond), R, (two bonds),
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lytically, the distortion theorem was proven with the
use of the inverse-power dependence (2). Another
important result was the confirmation of the empirical
conclusion that equations (2) and (3) are almost equiv-
alent. In particular, it was found that the unit bond
lengths R, should be almost equal for both BVM vari-
ants and that their parameters are related as

N=R,/b, (24)

because

n-1=R,/p. (25)

The above relationships should be considered as
approximate, because, strictly speaking, the parameters
p (and therefore also b) are different for each bond and
depend, in particular, on the type of the anion. This
allows one to interpret the linear dependence between
the experimental bond lengths R, [31] for the bonds

formed by a large group of cations with various anions
established in [17].

Finally, it was also established that the parameters
R; are directly related to the atomic radii [31] and that
they are equal to the sums of covalent radii of the
bonded atoms with due regard for a certain decrease of
bond lengths of purely ionic bonds. This correction is
close to the empirical correction taking into account the
difference between the electronegativities of bonded
atoms suggested earlier in [18].

2. METHODOLOGY OF PREDICTING BOND
VALENCES AND BOND LENGTHS

Prediction of bond valences and lengths with the use
of the bond-valence method, the known chemical for-
mula, and the main topological characteristics of the
structure is made in several stages including: (i) the
construction of the connectivity matrix describing the
structure topology, and determination of bond valence
sums (ii) the construction of the circuit equations, (iii)
the determination of ideal bond lengths, (iv) the refine-
ment of the details of the structure and structure map-
ping. Consider these stages.

2.1 Construction of the Connectivity Matrix
and Determination of Bond Valence Sums

The topological characteristic of a structure can be
represented in the form of the connectivity matrix.
Each crystallochemical position is represented in this
matrix by the type and the valence of the constituent
atoms and also by all the interactions within the first
coordination sphere around each atom. All the bonds
for each cation form the horizontal rows, whereas those
for the anions, the vertical columns of the matrix.

CRYSTALLOGRAPHY REPORTS Vol. 44 No. 4 1999

693

Consider as an example the structure of danburite
CaB,Si,0¢ with the connectivity matrix in the form

0(1) (X2) O(2) (x2) O(3) (x2) O4) O(5)
Ca 2 2 2 0 1
B(x2) 1 1 1 0 1
Si(x2) 1 1 1 1 0

Using formula (4) and knowing the coordination of
each ion, one can write the following expressions for
the valence sums

Vea = 28ca00) + 28cao) + 28ca00) + Sca0e)
Vi = sp_oa) + SB-o@) + SB-03) + $B-0(5)s

Vsi = Ssico + Ssi-o + Ssi-oe) + Ssi-ow»

Voay = 28ca-oqy + SB-oq1y + Ssi-o)s
Vow) = 2Scao@ * Ssi-on) + SB-02)>
Voo = 25cao@) t Ssi-o® t SB-0a3)s

V0(4) = 2s Si-0(4)»

Vosy = 255065 + Sca-00)-

Finally, one arrives at the system of eight equations
with thirteen unknowns, of which only seven are inde-
pendent, because the following condition of electrical
neutrality should be fulfilled:

ZVO(]) + 2V0(2) + 2V0(3) + VO(4) + VO(S)

(26)
= VCa + 2VB + ZVS]'.

In the general case of a crystal with n crystallochem-
ically independent cations and m anions, the number of
bonds that can have different valences is mn. The num-
ber of independent valence sums is equal to m + n — 1.
Obviously, if n, m > 1, the system has no solution,
because the rank of the matrix is less than the number
of unknowns. The necessary equations can be obtained
using the equal-valence rule (see the next section).

2.2 Construction of Circuit Equations.
Equal-Valence Rule

As was indicated above, the important feature of the
bond-valence method differing it from the second Paul-
ing rule reduces to the fact that the BVM attributes a
certain valence to each bond in a crystal, whereas the
Pauling rule reduces to the determination of the valence
strengths of cations surrounding a certain anion. In
many cases, the values of the valence strength deter-
mined for both bond partners (a cation and an anion)
are not equal to one another. Therefore, one arrives at
the necessity of calculating a universal bond-valence
value proceeding from the values of the Pauling
valence strengths considered as the initial conditions.
This can be made by averaging both values of the
valence strength. However, in the general case, such



694

Table 1. Calculated and observed bond lengths in the
Ca,B,8Si, 04 structure

Bond R A Ry A
Ca-0(1) 2.448 2.495
Ca-0(2) 2.448 2452
Ca-0(3) 2.448 2.466
Ca-0(5) 2.341 2.397
B-0(1) 1489 1.481
B-0(2) 1.489 1.498
B-0(3) 1.489 1.462
B-0(5) 1.445 1451
Si-0(1) 1.624 1.616
8i-0(2) 1.624 1,623
Si-0(3) 1.624 1.612
Si-O(4) 1.624 1.613

average values s; do not obey the valence sum rule (4).
Thus, the initial Pauling values of s;; should be cor-
rected by adding some equal increments to (or subtract-
ing them from) all the bonds of the given atom in such
a way that the valence-sum rule would hold [34]. This
procedure should be repeated until the §;; values for all
the atoms in the crystal would satisfy rule (4). Thus, the
number of the fitting cycles should be approximately
equal to the number of atoms in the formula unit of the
crystal [34].

Schematically, the procedure of determining the
individual values of the bond valences can be illustrated
on a molecule of the composition ABXY (where A and
B are cations and X and Y are anions) or on a certain
hypothetical four-membered ring (also called a circuit
or a loop) of the composition A~X—B-Y in a crystal
structure. Denoting the valence of the AX bond by s, we
have

The valence of the bond calculated using the
valence sum rule (4) is indicated at each segment sym-
bolizing a bond. The differences in the bond valences at
each cation are

Asy = syx—say = 25=V,

ASB = sBX_SEY = ZVX"'VB—ZS.

The ring, as a whole, should satisfy the condition of

URUSOV, ORLOV

the electrical neutrality, if
Asy~Asg = 0 (or As; = Asp) and
Va+Vp = VitV
Performing some simple transformations, we obtain
Sax = 8 = (Vy/2+9q),
spx = (Va/2+q),
spy = (Vp/2~q),
Say = (Vy/2-q),

where g = (Vy - V,)/4.

On the other hand, the condition As, — Asg = 0 can
be rewritten in the form

Sax—Say+Spy—S4y = 0.

In other words, the bond valence can be treated as a
certain “vector” directed from a “cation” to an “anion.”’
The use of the opposite direction (from an anion to a
cation) changes the vector sign from plus to minus. In
general, for a certain loop of bonds, the following equa-
tion is valid (with due regard for the sign alternation):

27

This is the so-called the equal-valence rule (EVR)
[34], which describes the tendency of bond valences of
any atom in a crystal to have the values as close as pos-
sible to one another. The equal-valence rule (27) and
the valence-sum rule (4) correspond to the following
principle: each atom distributes its valence among all
its bonds as uniformly as possible.

Brown indicates that the equal-valence rule can be
used to predict the individual valences and, thus, also
the bond lengths in most of the inorganic crystals
[20, 34]. The only exception are the crystals in which
the atom coordination is distorted by such electronic
effects as the stereochemical activity of lone electron
pairs and the Jahn-Teller effect for some transition met-
als. The special corrections to this rule should also be
introduced in the case of steric hindrances (as in the case
of symmetry lowering in the perovskite-like structures).

Another method for predicting individual bond
valences based on the Pauling principle of the electrical

- neutrality of the crystal was suggested by Baur [5]. This

method is also consistent with the method of bond-
valence sums (4) and yields similar results.

With due regard for all the above stated, the system
of seven BVS equations for danburite can be comple-
mented with five EVR equations to form the system
sufficient for determining 12 unknown bond valences:

Sca-0(1) ~ Sca-0) + SB-0) ~ S-001y = O,

Sca-02) ~ Sca-00) + SB-0(3) — Sp-o2) = O,

CRYSTALLOGRAPHY REPORTS ~ Vol. 44 No.4 1999
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0,
0,

Sca-0@3) ~ Sca-0¢5) T SB-0(5) — $B-003)
SB-o(1) ~ SB-02) T Ssi-02) — Ssi-o) =

SB-0©2) —~ SB-02) T Ssi-0(1) — Ssi-02) = 0.

The matrix form of the structure topology describes
closed circuits whose vertices are formed by the corre-

SCa-0(1) SCa-0@2) SCa-03) S5Ca-0(5) 5B-00) SB-0@2) SB-03) SB-0(5) Ssi-0(1) 58i-0@2) SSi-0(3) ISi-0(4) B
2 2 2 1 0 0 0 0 0 0 0 0 2
0 0 0 0 1 1 1 1 0 0 0 0 3
0 0 0 0 0 0 0 0 1 1 1 1 4
1 0 0 0 1 0 0 0 1 0 0 0 2
0 2 0 0 0 1 0 0 0 1 0 0 2
0 0 1 0 0 0 1 0 0 0 1 0 2
0 0 0 0 0 0 0 0 0 0 0 - 2 2
0 0 0 0 0 0 0 2 0 0 0 0 2
1 -1 0 0 ~1 1 0 0 0 0 0 0 0
0 0 1 -1 0 0 -1 1 0 0 0 0 0
0 1 -1 0 0 -1 1 0 0 0 0 0 0
0 0 0 0 1 -1 0 0 -1 1 0 0 0
0 0 0 0 0 1 -1 0 0 -1 1 0 0

Here B is a constant term of the equation equal to the
valence of the atom for which the BVS equation is writ-
ten. The last five rows of the matrix correspond to the
circuit equations.

The above matrix yields the following bond
valences for the structure:

Scaoqy = 0238, Sciop = 0.238,
Scaom = 0238, Sciow = 0, Scwos = 0.331,
Spoqy = 0.741, sp_op = 0.741,

Spom = 0.741, spow = 0, spos = 0.834,
Ssicoqy = 1.020,  s5.00 = 1.020,

Ssicom = 1020, ssiow =1, Ssiom = 0.

The bond lengths corresponding to these bond
valences can be obtained from (2) and (3). Their values
are listed in Table 1 together with the corresponding
experimental bond lengths determined in [35].

Some other examples of the bond lengths calculated
by the bond-valence method are considered in Appen-
dix 2.

2.3 Introduction of Weight Factors

Earlier [10], it was shown that in some cases, the
introduction of weight factors (ideal values of the
valence strengths of atoms, according to the initial
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sponding bond valences. Therefore the equations
received the name of the circuit equations.

Now, with due regard for the above stated, one can
solve the system of equations. Writing the system of
equations in the complete form, we arrive at the follow-
ing basic matrix

Pauling scheme) into the circuit equations can make the
calculated values closer to the experimental data.

The weight factors “refine” the contribution made
by each element of the connectivity matrix to its solu-
tion, which allows a more uniform (more symmetric)

‘valence distribution, i.e., makes the coordination poly-

hedron as close as possible to its ideal shape.

To illustrate the introduction of weight factors, con-
sider the matrix of the type

X Y Z
A Sax SAy 0
B Spx 0 Spz
C 0 Scy Scz

for which the equation of the six-membered loop has
the form

Sax —SaytScy—Scz+Spz—Spx = 0. (28)

If the valences of the atoms A, B, and C, and there-

fore also the their bond valences s, sp, and s. are dif-

ferent, one has to introduce the weight factors to the

loop equation. We considered several variants of such

weight factors. The best weight factors were those pro-
portional to the Pauling bond strengths of those ions
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Table 2. Calculated and
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observed structural parameters for

the rutile structure
p;g;‘]ft‘gfl Calculated Observed
? (4.584) 4.584
¢ (2.953) 2.953
Ti~O (x4) 1.942 1.945
Ti-0 (x2) 1.975 1.975
OOy 2.524 2.532

Table 3. Calculated and obse

the brookite structure

rved structural parameters for

pﬁgﬂg‘éf A Calculated Observed
¢ (9.184) 9.184
b (5.447) 5.447
€ (5.145) 5.145
Ti~0(1) 1.888 1.865
Ti-O(1") 2.017 1.992
Ti-O(1") 1.977 1.994
Ti-0(2) 1.933 1.919
Ti~O(2) 1.925 1.946
Ti-0(2") 2.025 2.039
O()-0(1) g 2.511 2.485
0(2)-0(2)yyin 2.534 2.514

Table 4. Calculated and observed structural parameters for

the anatase structure

pigglcetz,fl Calculated Observed
a (3.785) 3.785
¢ (9.514) 9.514
u(0) 0.2114 0.2066
Ti-O (x4) 1.928 1.937
Ti-0 (x2) 2,011 1.966
0-Opyy 2.507 2.448

that provided the maximum difference in valences
(usually, these were cations):

(Sax—~5ay)/Sp+ (Scy—5¢z)/5¢

+(SBZ_SBX)/SB = 0.

(29)

In most of the instances, the use of the above

weighting scheme provides the construction of a more
accurate model. Thus, the introduction of the weight
factors for the Y,SiBe,0, compound with the melilite-
type structure, reduced the mean-square deviations of

the bond lengths from their experimental values from
0.026 A t0 0.021 A [36].

If a compound consists of atoms with considerably
different valences (e.g., uni- and pentavalent cations),
the direct solution of the system of linear equations can
yield negative (i.e., physically senseless) valences for
the weakest bonds. The use of the weighting scheme
allows one to avoid similar situations.

Below, we consider the corresponding calculations
for the KVO, structure first solved by Rutherford [37].
The structure contains two uni- and pentavalent cat-
ions, and therefore the use of the conventional methods
yielded the negative bond valences. The introduction of
the weight factors for cations eliminated this difficulty
and increased the accuracy of the model. Both variants
of the calculated bond valences and the corresponding
experimental data [37] are indicated below.

Bond §ij without weights  5ij with weights S4j obs. [37]
K-O(1) -0.115 0.061 0.150
K-0(2) 0.154 0.110 1.165
V-0(1) 1.115 0.939 0.950
V-0(2) 1.385 1.560 1.490

2.4 Refinement of Crystal Structures.
Mapping of Bond Valences

Upon the determination of “ideal” interatomic dis-
tances and atomic coordinates by the bond-valence
method, the results obtained can be refined using the
distance least-squares (DLS) method [38] based on the
least-squares procedure for the search of the minimum
value of the functionat

AR = Y o}(R;-RY)’, (30)
i

where R?j is the standard interatomic distance and 0y
is the weight factor.

At this stage, it can also be necessary to take into
account next nearest neighbors forming no direct bonds
with the atom under question and the corresponding
bond angles. This would provide the minimization of
repulsion between the atoms or ions not bound directly.
This approach provides the prediction of bond lengths
within an error less than 0.05 A if no considerable elec-
tron and steric distortions take place [20]. The further
refinement of the crystal structure can be performed by
several methods. One of them was suggested by
Walterson [39] in order to localize lithium atoms in
lithium tungstates. The method reduces to the calcula-
tion of the sum of bond valences which would have
been possessed by a Li atom placed at a certain arbi-
trary point of the crystal space. The positions in which
this sum would have been close or equal to the unit
valence, are recognized as probable location of lithium
atoms. If the sum of the valences exceeds unity, the
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Fig. 8. Interatomic distances in the spinel structure calculated by the VLS method at various temperatures and the corresponding

experimental data: (a) the Mg~O distance, (b) the Al-O distance.

Li—O distances would be too short; if this sum is less
than unity, the distance would be too long. Varying con-
sistently the positions of lithium atoms, Walterson
managed to construct the map of valence sums, which
revealed all the possible positions for lithium atoms. In
addition to localization of individual atoms of the struc-
ture, the valence-sum map also provides the determina-
tion of all the empty cavities in the structure along
which the atomic transport (in particular atomic diffu-
sion) can proceed.

A very convenient method of valence-sum mapping
was suggested by Brown [40]. He used the function

f= (zsij/vi] )

with the exponent # arbitrarily chosen in the range from
8 to 16.

The maps constructed with the use of this function
show sharp maxima at the points where the valence-
sum maps show minima, i.e., at the voids of the struc-
ture. The values of the peaks drastically decrease along
the directions, where the valence sums increase. The
ideal position of the ith atom with valence V; corre-
sponds to f=1.0. Applying this method to the forsterite

€2y

structure Mg,Si0,, Brown managed to determine the
positions of Mg(1) and Mg(2) atoms and also possible
paths of Mg(1) diffusion. It looks like that the Mg(2)
atoms “cannot find” appropriate diffusion paths.

Earlier [38], our group suggested to minimize the
deviations from the experimentally determined valence
in modeling crystal structures by the so-called valence
least-squares (VLS) method. Using the least-squares
procedure, we minimized the following differences

AV = Y od(v,- Y s,

where V; is the formal valence of the ith atoms and o; is
a certain weight factor.

This functional was tested on the rutile TiO, struc-
ture. It was shown that it is possible to attain an almost
zero value of this functional, AV = 0, for any set of the
unit-cell parameters a and c¢. For instance, using certain
unit-cell parameters, a = 4.22 A and ¢ = 338 A, we
arrived at a conclusion that the TiO, structure with
these parameters consists of regular TiO4 octahedra
with the Ti-O distances 1.97 A and the oxygen coordi-
nate xp = 0.38. Thus, it is clear that the minimization of
functional (32) should be performed at the experimen-

(32)

Table 5. Interatomic distances in the spinel structure calculated by the VLS method at various temperatures and the corre-

sponding observed values [42]

T, RMg-O)y.s, A R(Mg-O)y, A R(Al-O)yys, A R(AI-O)qps, A

293 1.9349 1.9188 1.9201 1.9273

1503 1.9566 1.926 1.9416 1.9562

1663 1.955 1.9242 1.9464 1.9627

1933 1.9488 1.9183 1.9553 1.9733
CRYSTALLOGRAPHY REPORTS Vol. 44 No.4 1999
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tal unit-cell values in such a way that only free atomic  hard (Lewis) acid with a hard base and a soft acid with
coordinates are varied. For rutile, these were the coor-  a soft base:
dinates x of the OXygen position (x, x, 0). Irrespectively (HA)(SB) + (SA)(HB) — (HA)(HB) + (SA)(SB).
of the choice of the initial Xy values (rangin_g frorp 0.25 The hardness and the softness of acids and bases
to 0.40), the calculated value of this coordinate 18X0 =" have not been quantitatively characterized as yet. Pear-
0.3053, which agrees quite well with its experimental son [43] divided acids and bases into three groups—
value x = 0.3050(3). Tables 24 list the results of SiIM-  hard, soft, and intermediate. A more detailed systemati-
ilar modeling and the corresponding experimental val-  zation can be made if one takes into account the geo-
ues for the rutile, brookite, and anatase structures, metrical characteristics of atoms and ions (their radii),
However, the experience of the VLS refinement of polarizabilities, electronegativities, etc. [44]. Recently,
more complicated structures (e. g. of kyanite A1,SiO;)  Brown suggested to use the qharactensgc bond valence
showed that satisfactory results are obtained only if the ~ ($) of bonds formed by an anion or a cation under study
initial coordinates differ from the true ones by not more ~ [45]:
than 0.025. In such cases, one has, first, to determine 5 = (s)
the initial coordinates by the DLS method and then use k k
these coordinates in the further refinement, o = (8),

One can successfully use as a standard (ideal) dis-  yphere (v) is the average coordination number of the
tance the distance predicted by the bond-valence cation or the anion obtained by the statistical process-
method. The further refinement of the model is made by ing of a large set of experimental data [45]. It was
the VLS method. Such a combined procedure is called gy guwn [46] that the thus obtained s; values correlate
Egg] dﬁgnce t;aléence least-sqgalrles (DdV}S) “(‘ietll?"d with the electronegativity of many cations.

oinal arorod was successfully used for mode g Since anions form bonds in a larger range of
the spinel strugture MgALO, (sp. gr. Fd3"?) [4.1]’ In valences than cations, it is expedient to degﬁne thegmax-
order to determine the parameter @ of the cubic unit cell imum strength of a base as
and the coordinates (x, u, u) of oxygen atoms, the val- 8
ues of these parameters were varied within the ranges Smax = VIV (34)
75<a<85Aand035<y< 0.40, respectively. The

Vi/ (v, V,>0,

33)
V./{v);, V,<0,

I}

) ] Here v, is the minimum coordination number of an
values of the bond valences s; in the functional (32) anion.
vere set using equation (2) of the bond-valence The valence-matching principle (VMP) states that
HthhOd‘ Moreover, thermal expansion of the bonds was the stable compounds are formed by Lewis acids and
also taken into account using the formula bases with close values of the characteristic bond
R(T) = R,(1 + 0AT), valences and are not formed otherwise [46].

h is the I . . h The HSAB principle was tested on numerous sili-
where Qis the linear expansion goefﬁclxent of the bonds cates, phosphates, and other groups of substances [44].
equal to a(Mg-0) = 1.2 x 10- deg” and o(Al-0) = |y was found that monovalent alkali metals (soft acids)
1.1x 107 deg*! [42], DVLS-modeling was performed cannot form orthosilicates having island-type struc-
at the temperatures 293, 1503, 1663, and 1933 K, at  yres, whereas the high-valence cations (Zr**, Ti*, A,
which the precision X-ray data are known [42]. etc.) (hard acids) cannot form polymerized silicates,
Table 5 and Fig. 8 illustrate the results of DVLS-  Later, a similar conclusion was also drawn in [47].
modeling for spinel and show satisfactory agreement The direct comparison of valence characteristics of
between the model and the experiment. The interatomic acidity and alkalinity of atoms playing various crystal-
distances calculated at different temperatures Agree  lochemical roles makes the basis of the notion of a
with the experimental dependences R (Fig. 8), “mineralogically probable structure”, ie., a crystal
although it was assumed [42] that partial spinel inver-  gtryucture that can be formed, with a high probability, in
sion (disordering of Mg and Al atoms) could take place  (he crystallization process under the natural conditions
atT'> 1503 K. However, modeling performed show that [48]. The examples are the silicates with the general
such an assumption is not necessary. formula A,,,Si,,O‘D [48, 49], where A are the large (with
the radii exceeding 1 A) monovalent cations such as
3. APPLICATIONS OF THE BOND-VALENCE Na*,. K*, Rb* and Cs*. It was shown that numerous syn-
MODEL thesized compounds of such type relate to the group of
} L mineralogically improbable compounds. The stability
3.1 Valence-Matching P rinciple of such structures decreases with a decrease of the
As is well known [43], the formation of stable com- polymerlzathn degree of SiO,-tetrahedra and an
pounds, including crystalline ones, obeys the general increase of the A*-cationic radii, so that the orthosili-
rule known as the principle of hard and soft acids and cate with the formula Cs,4Si0, should be the least stable
bases (HSAB principle), which states that stable prod- compound. For the fulfillment of the local valence bal-
ucts of any reaction consist of the combinations of a  ance (the bond-valence matching) in the hypothetical
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structure of the latter compound, each oxygen atom
should be bonded to one Si-atom and four Cs*-ions dis-
playing an unplausibble fourfold coordination.

The combination of the valence-matching principle
and the bond-valence sum rule (4) can be efficiently
used, e.g., in the analysis of stable configurations of the
short-range order in the distribution of heterovalent
atoms among the crystallographically nonequivalent
positions. Such a procedure was recently used [50] in
the determination of the most probable location of cat-
ions in complicated monoclinic calcium, sodium—cal-
cium, and alkali amphiboles, in which the heterovalent
substitutions occur over several crystallographically
nonequivalent positions: the large cavities A inside dou-
ble hexagonal rings of (Al, Si)-tetrahedra (the Na*,
Ca?*, vacancy), four octahedral, M(1), M(2), M(3),
M(4) positions (M = Li*, Mg?*, Mn?t, Mn*, AI**), and
two tetrahedral, T(1) and T(2), positions (T = Al*,
Si**). This analysis showed that only some (usually, not
more than three or four) configurations of cations from
the neighboring positions can simultaneously meet
both VMP and BVS requirements.

The maximum number of such configurations is
determined in the pargasite,
NaCa,(Mg,Al)[SizAl,0,,1(OH),, structure. The condi-
tion of the minimum deviation of the bond-valence sum
from the formal valences of the cations and anions
admits four variants of the short-range order:

M) MQ2) M3 M4 A T(1) T@)
8 Mg Al Mg Ca Na Al Si

(Imn Mg Mg Mg Ca - Si Si
{n Mg Mg Al Ca Na Al Si
Iv)y Mg Mg Al Ca - Si Si

The local compensation of the valences is attained
due to the fact that the Al atoms located in the octahe-
dral M(2) and M(3) positions are the neighbors of the Al
atoms occupying the tetrahedral 7(1) position. More-
over, the additional contributions to the valences of the
oxygen atoms coordinating aluminum come from the
Na atoms in the A positions. If both types of the tetra-
hedra are occupied by Si atoms, the more favorable sit-
uation is the location of Mg in the M(2) position and the
formation of vacancy in the A position.

The neighboring regions (I, II, III, and IV) charac-
terized by various types of the short-range order can be
“placed” into the crystal structure because of a certain
bond-length relaxation at the boundaries between these
regions. The diffraction methods can reveal only the
configuration averaged over all the regions with various
types of the short-range order (the so-called average
structure). However, the appropriate interpretation of
the IR, NMR, NGR, EXAFS, etc. spectroscopic data
requires the knowledge of the short-range order.
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3.2 Evaluation of Atom Valence
from Structural Data

This classical problem solved by the BVM is, in
fact, inverse to the prediction of interatomic distances,
i.e., equation (4) is solved with respect to V; at the
known distances R;. This problem arises if, by any rea-
son, the valence of one or several atoms in the structure
is unknown or if the structure contains atoms in differ-
ent valence states. For example, the valence sum close
to unity in the oxygen position indicates the probable
presence in the close vicinity of a hydrogen atom, i.e.,
the existence of the hydroxyl group OH™. It is espe-
cially difficult to localize hydrogen in structures con-
taining heavy atoms. In these cases, modeling with the
calculation of bond valences can indicate the most
probable location of hydrogen bonds. Recently, such
modeling was performed for the carminite structure,
PbFe,(AsO,),(OH), [51].

The positions of O* and F~ ions can be distin-
guished even if the numbers of electrons and inter-
atomic distances in both cases are rather close, i.e., if
the X-ray diffraction data do not allow the identifica-
tion of the kinds of atoms. An example is the LaOF
structure [52]. The La3* cation in this structure is sur-
rounded with four O%*- and four F~ ions. Taking into
account the values of the ionic radii, the longer inter-
atomic distances (2.60 A) should be attributed to the
La—O bonds, whereas the shorter ones (2.42 A), to the
La-F bonds, as was made by Zachariasen in the early
determination of this structure [12]. However, the cal-
culation of the corresponding bond valences (s = 1/2 for
La-O and s = 1/4 for La—F) show that in fact, La—F
bonds are longer than La~O bonds, which is confirmed
by the recent X-ray study of this structure.

The specific problem solvable by the bond-valence
method is the determination of the individual valences
of atoms occupying crystallographically nonequivalent
positions. This problem can be successfully solved,
e.g., for Cul, Cu, and Cu™ atoms in structures of high-
temperature superconductors [53].

In some cases, the calculation of experimental
bond-valence sums indicates the presence of atoms in
mixed valence states in the nonequivalent positions of
the structure. Thus, valences of V atoms occupying four
crystallographically nonequivalent positions in the
V,0; structure calculated from the measured inter-
atomic distances lie within 3.3-3.6 v.u., with the aver-
age value being 3.48 v.u. (the average valence for the
stoichiometric composition is 3.50 v.u.) [10].

Numerous precision experimental data on the near-
est neighbors and bond lengths of individual atoms
have been obtained recently for crystalline substances,
isolated molecules and molecules and ions in solutions
by various X-ray spectroscopy methods (XAS,
EXAFS, and XANES). In these cases, one has to deter-
mine several valences of atoms of a certain chemical
element located in different positions of the structure.
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earth atoms and the valence sumsg for the bonds reaching the
F atom in the apatite structure,

This can be made by calculating the bond-valence sums
(4) for individual atomic positions. This method was
used to determine the states of metal oxidation in

metalloproteins and other organometallic complexes
[54-59].

3.3 Positional Preference in Heterovalens
Solid Solutions

In a number of studies on the structural ordering in
synthetic F- and OH-apatites containing various impu-
rities performed in the early seventies [60, 61], it has
been established that rare earth elements usually substi-
tute Ca in the position Ca(2) (a seven-vertex polyhe-
dron with F or OH at one of the vertices, the symmetry
C,) and not the Ca( 1) position (a nine-vertex polyhe-
dron—the tricapped trigonal prism, the symmetry Cy).
This results in a situation paradoxical in terms of jonic
sizes—the larger light TR3+ (La3+, Nd**) ions show the
tendency to occupy a smaller Seven-vertex polyhedron
of Ca(1) and not a larger nine-vertex polyhedron of
Ca(2). Later, these experimental observations were
repeatedly confirmed by X-ray determinations of both

natural [62] and synthesized [63] fluorapatite single
crystals,

These facts were first interpreted upon the detailed
analysis of the energy effects of ordering [64]. The cal-
culations of the crystal energy showed that the electro-
static potential in the position Ca(2) is 4% higher than
the potential in the position Ca(1). This explains the
tendency of impurities with the charge exceeding the
charge of Ca?* to occupy the Ca(2) position, These are
the impurities of trivalent and those bivalent atoms that
have lower electronegativities (Sr2* and Ba®*). These
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results are inconsistent with the predictions based on a
simple geometric model, accordin g to which the larger
atoms should occupy the Ca(1) position.

Later, it was discovered [62, 63] that in the fluorap-
atite (F-Ap) structure, the Ca(2) and, especially, the F
atoms coordinating Ca(2) have “undersaturated” bond-
valence sums (1.88 and 0.89, respectively). The partial
substitution of Ca by a trivalent atom in the position
Ca(2) levels the bond-valence sums in the positions
Ca(1) and Ca(2) and decreases the valence undersatu-
ration of the fluorine atom, It was shown [63] that there
is the inverse correlation between the occupancies of
the positions Ca(2) and Ca(1) with rare earth atoms and
the valences of the bonds reaching the F-ion (Fig. 9).

It is seen from Fig. 9 that the occupancy ratio
Ca(2)/Ca(1) rapidly decreases with the transition from
large light TR jons to small heavy ones. This signifies
that the efficiency of rare earth atoms compensating the
valence undersaturation of F atom decreases with a
decrease of the atomic number. It seems to be associ-
ated with the fact that the interatomic Ca(2)-F distance
is not decreased with a decrease of the radius of the
TR* on in the position Ca(2), but even slightly
increases (from the value 2310 A in La-F-Ap up to
2.314 A in Dy-F-Ap) [63].

Recently, it was assumed [65] that the criterion of
valence undersaturation in ope or several Ca positions
in a number of Ca-containing minerals can indicate the
preferential occupancy of these positions by highly
charged (in particular, rare earth) atoms, Thus, the cal-
culations showed that the Ca-O bonds in the Ca(2)
position in the minerals of the clinozoisite~epidote
Eroup are considerably longer (on the average, by

0.1 A) than in the Ca(1) position and that the total bond
valence of the Ca(2) position equals 1.7 instead of 2.0
for the Ca(1) position. Indeed, the refinement of the
structures of rare earth-containing minerals of this
groups (allanite, dissakisite, and dollaseite) confirms
that the rare earth atoms are preferably located in the
position Ca(2). In a similar way, of four Ca positions in
vesuvian, three are valence-supersaturated and only the
position Ca(3) is noticeably undersaturated. The refine-
ment of this structure showed that the rare earth impu-
rities tend to substitute Ca in the Ca(3) position.

The structure of the rare mineral cuspidine,
Ca,[Si,0,]F,, has four crystallographically nonequiva-
lent Ca positions of which two, Ca(3) and Ca(4), are
“less saturated” with the Ca~0O and Ca~F bond valences
than two other positions, Ca(1) and Ca(2). The recent
structural refinement of cuspidine [63] showed that the
rare earth atoms preferably enter the first pair of the
positions, thus increasing the total valence of the bonds
in those positions.
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3.4 Bond Valence and Crystal Properties. Correlation
Between Thermal Expansion and Compressibility
and the Bond-Valence Gradients

Both energy of molecule dissociation (atomization
of a crystal) and the bond valence depend on the inter-
atomic distances in a similar way—according to the
exponential or inverse-power laws. Therefore one can
expect that the relation between these quantities would
be rather simple, probably even linear. Indeed, it was
shown [66] that the relation between the dissociation
energy E(C-0) of the C-O bonds and their valences is
of a simple linear form approximately described by the
equation

E(C-0) = Js,

where J =96 kcal/(mol v.u.). The assumption about the
linear character of the above dependence was extended
to inorganic crystals [67]. The parameters J were calcu-
lated for several dozens of cation-oxygen bonds.

The above hypotheses can be verified by indepen-
dent methods on the substances whose polymorphic
modifications include the atoms with various coordina-
tion numbers, e.g., on three polymorphs of Al,Si0s—
sillimanite, andalusite, and kyanite. One of the Al
atoms has the same coordination number (six) in all the
polymorphs, whereas another aluminum atom is in a
tetrahedron (c.n. = 4), five-vertex polyhedron (c.n. =5),
and an octahedron (c.n. = 6), respectively. Thus, the
average bond valences of the Al-O bonds in these poly-
morphs are 5/8, 11/20, and 1/2, respectively. Figure 10
shows the dependence of E on s.

In some cases, the thermal expansion coefficients
and the bond valences showed some correlation. The
bond-valence maps obtained for atoms displaced from
their equilibrium positions toward neighboring atomic
positions calculated for three Al,SiO5 polymorphs
(kyanite, sillimanite, andalusite) [38] are shown in
Fig. 11. The isolines are elongated along the directions
where the s gradient with respect to the atomic coordi-
nates is minimal. It seems that these directions should
coincide with the directions of atomic-coordinate vari-
ations with an increase (decrease) in the pressure and
temperature. Indeed, the arrows in Fig. 11 indicate the
directions of the changes of the atomic coordinates in
the andalusite structure observed with an increase of
the pressure and temperature, which almost coincide
with the direction of isoline elongation. It is seen that,
under the action of high pressures and high tempera-
tures, atoms are displaced in the opposite directions.

Table 6 lists the experimental changes in the bond
lengths [68], the corresponding thermal expansion
coefficients in the andalusite structure, and the corre-
sponding calculated changes in the bond valence in the
temperature range from 25 to 1000°C. One can see an
obvious inverse correlation between these properties—
the bond length varies the more pronouncedly, the less
is the change in the bond valence.
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Fig. 11. Isolines of bond valence as a function of the x and
z coordinates of the O, atom in the andalusite structure. The
circle in the center indicates the equilibrium position of the
Oy atom. The isolines are spaced by 0.005 v.u.

Recently, Brown ef al. [69] managed to predict ther-
mal variation of bond lengths in terms of the bond
valence method, in particular, using the distortion theo-
rem. Let an atom be symmetrically surrounded with its
neighbors and perform thermal vibrations with the
amplitude SR around its center, so that the instanta-
neous bond-length value obeys the relationship

R = (R)+dR,
where (R) is the time-averaged bond length and &R
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Fig. 12. Correlation between the temperature variation of

the bond length averaged over all the cations (dR/dT) and
the bond valence s. ‘

changes with time in such a way that its average value

is zero. Expanding equation (3) of the instantaneous
bond length into a series,

s' = exp((Ry-R')/b) = exp((Ry- (R))/b)
X exp(8R/b) = exXp((Ry—(R))/b)

X[1-3R/b+8R*/2p% + ...]

and ignoring the terms of orders higher than second, we
obtain

AR = (3R% /2,
where AR = (R) - R,, R, is the bond length in the
absence of thermal vibrations. Substituting the constant
b=0.37 A into the above equation and introducing the
notation U = (SR2), we obtain
AR =1.35U.

Thus, the thermal elongation of the bond length is

proportional to the mean-square deviation of the bond

length from its average value, Differentiating both sides
of the equation, we have

dR/dT = dAR/dAT = 1.35(dU/4T).

The above equation can also be written in the form
dR/dT = 1.35k/G,

where £ is the Boltzmann constant. The force constant
G can be described by the following expression relatin g
it to the bond valence s:

G =cs-d(1- exp(-cs/d)),
where ¢ and d are the empirical constants.

Figure 12 illustrates the good agreement of the
model with the experimental data taken from the ICSD.

3.5 Analysis of Geometric Strains and Electronic
Effects in Crystal Structures

As has already been indicated, the methodology
considered above provides the determination of an ide-
alized scheme of the bond-valence distribution in a
crystal structure with the known chemical composition
and topology. This methodology allows one to indicate
only the number and the formal valence of the nearest
neighbors. It is clear that such a description of the struc-
ture is far from being complete, because it contains no
information about the structure symmetry. Therefore
the calculated bond valences and the corresponding
interatomic distances (upon the introduction of correc.
tions for electronic effects) are called “simple” or
“ideal” [14]. However, the term “unstrained-bond
valence” seems to be more preferable, because it corre-
sponds to the condition of the highest symmetry of the
bond distribution for the given crystal topology. There-
fore, the comparison of the theoretically predicted and
experimentally determined bond lengths can be used in
the search for most strained regions in the structure
(which can simultaneously be the sites of the highest
reactivity or lability) and in the search for strains of the
structure as a whole. The latter requires the develop-
ment of the criteria of the structure stability in terms of
the geometric strains caused by the so-called nonlocal
steric hindrances [14].1

Consider the advantages provided by such an analy-
sis on several examples. It is well known that the oljv-

UThe well known example of local steric effects is a hydrogen
bond [14]. Usually, a small hydrogen atom is located in a too
large void and therefore forms nonsymmetric bonds,

Table 6. Changes in the cation-anion bond lengths in andalusite during heating from 25 to 1000°C and the corresponding

bond-valence gradient

Distance Change in bond length, A | Thermal expansion coefficient of bond, deg™! | Bond-valence gradient
Al(1)-0, 4x 1073 22x10° 0.0069
Al(1)-0, 2x1073 1.1x10° 0.0058
Al(1)-0, 6.8x 1072 3.26 x 106 0.0001
Al(2)-0, 7% 1073 3.9 x 1076 0.0031
Al(2)-0, 1.85x 102 9.89 x 106 0.0044
Al(2)-0, 4x%1073 22 %10 0.0082
Si-0, 5x1073 3.0x 107 0.0043
Si-0, 0 0 0.0154
Si~0, 0 0 - 0.0124
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Table 7. Calculated and observed valences and bond lengths for the wadsleyite (3-Mg,Si0,) structure

Bond Scalc Scalc.wt Rcalc’ A Rcalc.wt’ A Robss A
Mg(1)-0(3) 0.340 0.336 2.092 2.096 2.113
Mg(1)-0(4) 0.330 0.332 2.103 2.100 2.047
Mg(2)-0(1) 0.433 0.422 2.003 2,013 2.051
Mg(2)-0(2) 0.206 0.269 2.280 2.179 2.091
Mg(2)-0(4) 0.340 0.327 2.092 2.107 2.089
Mg(3)-0(1) 0.392 0.395 2.040 2.037 2.025
Mg(3)-0(3) 0.309 0.305 2.127 2.133 2.119
Mg(3)-0(4) 0.299 0.300 2.139 2.138 2.123
Si—0(2) 0.897 0.865 1.664 1.677 1.703
Si-O(3) 1.041 1.054 1.609 1.605 1.640
Si-0(4) 1.030 1.040 1.613 1.609 1.634

ine-type structure for orthosilicates containing bivalent
cations (Mg,SiO,, Fe,Si0,, Ni,SiO,, etc.) are charac-
terized by the ideal bond valence distributions corre-
sponding to the values of the Pauling valence strengths:
$(Mg-0) = 1/3, s(Si-0) = 1. The structure with such a
simple distribution of bond valences should possess the
highest possible symmetry, e.g., oxygen atoms in the
structure should form the hexagonal close packing with
half of the octahedral voids being filled with Mg atoms
alternating in a chess-board order with vacancies,
whereas Si atoms should be distributed over tetrahedra
sharing no faces and edges with Mg-octahedra [70].
However, the real Mg,Si0O, structure consists of tetra-
hedra that do share their edges with the MgOg-octahe-
dra, thus giving rise to geometric strains and lowering
the octahedron symmetry from the holohedral m3m to

1 (in the position M1) and m (in the position M2) and
the tetrahedron symmetry, from 43m to mm2.

Consider another example of the geometrically
strained  structure—the [B-phase of wadsleyite
B-Mg,SiO, formed from forsterite a-Mg,SiO, under
pressures exceeding 13 GPa. The connectivity matrix
for the structure can be written as

o(1) 02) 0@B)(x2) O®)(x4)
Mg(1) 0 0 2 4
Mg(2) 1 1 0 4
Mg(3) (x2) 2 0 2 2
Si (x2) 0 1 1 2

It is seen that the O(2) atom is bound to two tetrahe-
drally coordinated Si atoms and one o Mg atom. This
indicates that the O(2) atom is pronouncedly supersat-
urated with respect to Pauling valence strengths

(Z s; =2.33). This results in elongation of the Si-O(2)

bond (1.703 A) and formation of the very small Si-
0(2)-Si bond angle (122°). On the other hand, the O(1)
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atom has five neighbors, 1Mg(2) + 4 Mg(3), forming a
distorted square pyramid, and thus its valence is under-
saturated with respect to the Pauling valence strength

(25,- =1.67). To this position there corresponds a very

low value of the electrostatic potential, 19.6 eV (com-
pare with the average potential for O-atom equal to
28.6eV) [71]. This signifies that in such a structure,
there is, at least, one position appropriate for protonation
and formation of a hydroxyl OH in the site O(1) (this was
first assumed by Smyth in 1987 [72]).

The ideal valences and bond lengths obtained are
listed in Table 7 together with the s and R values with
due regard for the weighting scheme.

Comparing the calculated and the experimental
bond lengths, we see that the most geometrically
strained bonds in the structure are Mg(2)-0O(2) and Si—
0O(2), whereas Mg(2)-0(1) and Mg(3)-O(1) are rather
close to those predicted on the basis of our model.
Indeed, the detailed analysis of the electrostatic poten-
tial obtained from the precision X-ray data [73] shows
that the potential minimum is close to the position
O(2), which indicates that this position, along with the
position O(1), is most favorable for the protonation
reaction. These assumptions are confirmed by the
recent study of the Raman and the IR spectra of the
B-phase Mg 74519.97H 6504 [74).

Typical nonlocal geometric strains are observed in
the perovskite-type structure described by the general
formula ABO;. The cuboctahedral coordination poly-
hedra of large A cations and octahedra of relatively
small B cations share the edges, which resuits in the
compression of the former and extension of the latter
polyhedra. Thus, the octahedral voids become too large
for B atoms, which, in accordance with the distortion
theorem, are displaced from the centers of their polyhe-
dra. As a result, such crystals show important ferroelec-
tric properties. The equal-valence rule (27) is violated
and, the bond valences deviate from their ideal values.

In some cases, geometric strains in the structure can
be diminished or eliminated because of the occurrence



704

Table 8. Bond-strain factors in the BaTi0; structure

Ss)ltrl;-:l];gi; 6Ba—O 6I‘i—O 6struct
Orthorhombic 0.063 0.202 0.132
Trigonal 0.048 0.196 0.122
Tetragonal 0.061 0.064 0.063
Hexagonal 0.033 0.035 0.034
Cubic 0.060 0.060 0.060

of electronic effects. Thus, the combination of the
“compressed” Bi-O layers and the CuO, layers in high-
T, superconductors is accompanied by the displace-
ment of Bi atoms from the centers of their octahedra
and formation of trigonally distorted coordination,

Sometimes, the bond-length relaxation initiates the
electronic transitions between the cations possessing
different valence states. Then, if such transitions result
in the formation of advantageous electronic configura-
tions, the energy spent on distortion of the structure
reduces, and the positions are stabilized (e.g., the posi-
tions occupied by Cu*, Cu?*, and Cu* in the
BaY,Cu;0; structure [75]).

Recently, it was shown [76] on an example of triva-
lent antimony in alkali metal and alkali earth thio- and
selenoantimonates that the electronic effects for atoms
with lone electron pairs can be taken into account
within the framework of the bond valence method if
one assumes that the parameter R, depends on the bond
angle X-Sb-X, i.e., on the sp-hybridization of the
valence orbitals of the Sb atom. The alternative method
for interpreting the experimental data (almost equally
accurate) consists in the withdrawal of the universal
value b = 0.37 A and the use of the individual values of
this parameter for the SbI~S and Sb_Se bonds equal
to 0.54 and 0.50 A, respectively, An increase of the b
values in this case can be attributed to the effect of
repulsion of electrons of the lone-pair bonds and a
higher “lability” of the corresponding bond lengths.

In some instances, the strains cannot be completely
eliminated, and the valence-sum rule (4) is violated.
The “residual strains” were revealed for some Al posi-
tions in B-alumina [77], in the melilite structure [78],
. and in La,NiO, [79].

For the tetragonally distorted perovskite-type
BaTiO; structure, the residual straing D [see (6)] attain
the values of 0.35 v.u. This is explained by the too large
size of a Ba atom (the parameter of the cubic unit cell
corresponding to the unstrained Ba~O bond should be

equalto a = /2 R(Ba-0)=4.16 A), and a too small Ti
atom (the parameter of the cubic unit cell correspond-
ing to the unstrained Ti~O bond should be equalto a =
2R(Ti~0) =3.93 A). In the real structure, the Ba—0O djs.
tances should be shortened, whereas the Ti-O dis-
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tances, elongated. The unit-cell parameter is equal to
the averaged value of the two above values. Under the
compression of the structure as a whole at room tem-
perature, the compromise is attained due to lowering of
the structure symmetry. The residual strains seem to
become even more pronounced with the lowering of the
temperature 7. The BaTiO, structure experiences even
more pronounced distortion and, finally, at 5°C, it is
transformed into the orthorhombic structure.

On the whole, the calculations [14] show that the
structures stable at room temperature usually corre-
spond to the condition D < 0.2 v.u. The structures with
D > 0.2 v.u. are usually unstable and undergo phase
transformation in order to reduce their D value, Thus,
the residual-strain factor D seems to be a useful crite-
rion for determining the crystal-structure stability,

As was indicated above, one can also use another
indicator of the bond strain—the difference between
the theoretically predicted and experimentally
observed bond lengths. In this case, the strain factor )
for a certain group of bonds or the structure as a whole
can be described by the formula

N
2
Z (Si theor ~ 5 exp)
8 = |i=1 ¥ ,

where s,,,, is the experimental value of the bond.

valence obtained from the experimental bond length by
formula (3).

The 8 values for various variants of the distortion of
the perovskite-type BaTiO, structure are listed in
Table 8 (8g,_0, S1i_0, and 8, are the strain factors for
the groups of the Ba-O and Ti—O bonds and all the
bonds in the structure, respectively),

4. CONCLUSION

The analysis of one of the crystallochemical proce-
dures used for the interpretation and prediction of bond
lengths in inorganic crystals, shows that, the modern
bond-valence model can be successfully used at the ini-
tial stage of crystal-structure modeling. The simplicity
of the mathematical apparatus used in the method and
its numerous successful applications make it rather
attractive and popular. However, the possibilities of the
method are far from being fully used. The method is
very promising and should be further developed.

To be able to predict interatomic distances in crys-
tals, the program BONDVAL [80] based on the bond-
valence method was written for IMB-compatible per-
sonal computers in Turbo Pascal 7.0 at the Crystallog-
raphy and Crystal Chemistry Department of the Geol-
ogy Faculty of the Moscow State University. All the
BVM-based calculations analyzed in this study were
performed using the BONDVAL program,
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APPENDIX 1
Parameters of the bond-valence model for various atomic pairs

Atom Vi Atom Vi R, (Q2)| N, (2)|R,(3)| Atom V:; | Atom Vi |RL,2)|N,(2) |R;,(3)
Ag 1 o) ) 1946 | 74 | 1.842 | Cu 2 F -1 2050 | 5.6 1.594
Ag 1 S -2 1208 | 58 |2119| Cu 2 0] -2 1.718 | 6.0 | 1.679
Al 3 Cl -1 2.032 || Cu 2 S -2 12095 72 | 2054
Al 3 F ~1 1.545 | D 1 0] -2 0.927
Al 3 0] -2 1.651 || Dy 3 0] -2 2.001
As 3 0 -2 1.789 {| Er 3 F -1 1.904
As 3 S -2 12280 43 | 2272} Er 3 0] -2 1.988
As 5 F -1 1.620 || Eu 2 S -2 2.584
As 5 o) -2 1.767 || Eu 3 0 -2 2.074
3 F —2 1.281 || Fe 2 o] -2 | 1764 | 55 | 1.734

3 o) -1 1.371 || Fe 3 S -2 1.689

Ba 2 F -2 1.906 | 45 | 2.188 || Fe 3 F -1 1.679
Ba 2 O -1 2297 | 7.0 | 2285 Fe 3 0] -2 1.780 { 5.7 | 1.759
Ba 2 S -2 2.769 || Fe 3 S -2 | 2138 | 54 | 2.149
Be | 2 | F | -1 1281 Ga | 3 | 0o | =2 1.730
Be 2 0) -2 1381 || Ga 3 S -2 2.163
Bi 3 0] -2 [ 2010 50 |209%]| Ge 4 0] -2 1.748
Bi 3 S -2 12600 80 |2570( Ge 4 S -2 12210 | 24 | 2217
C 4 N -3 1442 || H 1 N -3 0.885
C 4 o) -2 1370 | 44 | 1390|| H 1 0] -2 {0870 | 22 | 0.882
Ca 2 F ~1 1.889 | 6.0 | 1.842 || Hg 2 0] ~2 1.983 | 65 | 1.972
Ca 2 ) -2 1909 | 54 | 1967 || Hg 2 S -2 2223 | 50 | 2.308
Cd 2 Cl -1 2186 | 6.0 | 2212 Ho 3 0] -2 2.025
Cd 2 ) -2 1990 | 7.4 | 1904 | I 5 0 ~2 1.967 | 45 | 2.003
Cd 2 S -2 2270 | 6.0 | 2304} In 3 F -1 1.835 | 63 | 1.792
Cl 7 o) -2 | 1622 | 47 | 1632 In 3 0] -2 1959 | 7.0 | 1.902
Co 2 Cl -1 2.033 || In 3 S -2 12340 | 62 | 2370
Co 2 0) -2 | 1727 | 56 | 1692| K 1 Cl ~1 2.519
Co 3 C -2 1.634 || K 1 F -1 1.420 | 33 | 1.992
Cr 3 F -1 | 1L700 | 65 | 1.657| K 1 0] -2 12276 | 9.1 | 2.132
Cr 3 6] -2 1733 | 52 | 1.724 || La 3 0] -2 | 2167 | 65 | 2172
Cr 6 0] -2 | 1787 | 50 | 1794 || La 3 S -2 2.643
Cs 1 Cl -1 3.020 | 12.8 | 2791 |} Li 1 F -1 1.360
Cs 1 o) -2 2335 | 6.6 |2417| Li 1 0] -2 1.466
Cu 1 I -1 2.108 || Mg 2 F ~1 1.578
Cu 1 S -2 1.898 || Mg 2 ) -2 1.693

CRYSTALLOGRAPHY REPORTS

Vol. 44 No.4 1999



706 URUSOV, ORLOV
Table (Contd.)
Atom |V, | Atom |V, |R, (@) N2 | R, || Atom |V, | Atom Vi 1R [N, [R,03)
Mn 2 Cl -1 2133 |[ sb 5 0 =2 [ 1911 ] 60 | 1942
Mn 2 F -1 11720 | 56 | 1.698 | sc 3 0 -2 | 1.865 | 54 | 1.849
Mn 2 0 =2 1798 | 56 | 179 sc 3 S -2 2.321
Mn 3 O | =2 | 1769 | 55 | 1760 Se 4 0 =2 [ 179 | 40 | 1.811
Mn 4 0 =2 1774 | 52 | 1753 se 6 0 -2 [ 1775 | 50 | 1.788
Mo 6 0 -2 | 1882 | 6.0 | 1907 sj 4 o 4 1.883
N 3 0 -2 1.361 || si 4 N -3 1.724
N 5 o) =2 | 1430 | 400 | 1432 s; 4 0 -2 1.624
Na 1 F -1 1.677 || si 4 S -2 2,126
Na 1 o -2 1.803 || sp 2 F -1 | 1739 | 35 | 1.9
Na 1 S =2 | 1532 4292300 sn 4 cl -1 2.276
Nb 5 o) =2 | 1907 | 50 | 1911 sn 4 F -1 [ 1846 | 63 | 1.843
Nd 3 0 =2 | 2137 | 65 | 2105 Sn 4 0 -2 | 1955 | 81 | 1.905
Ni 2 F -1 1.59 || Sn 4 S -2 12390 | 58 | 2399
Ni 2 0 =2 | 1680 | 54 | 1.654| s¢ 2 0 =2 2143 70 | 2118
SN L3 11700 | 48 [ 1704| Ta | s O | -2 |1907] 50 | 192
5 0 -2 1.617 || Tb 3 0 -2 | 2065| 65 | 203
5 S -2 2.145 || Te 4 o) -2 11933 | 45 | 1.977
Pb 2 0 =2 12044 | 55 (21121 Te 6 ) =2 1911 | 70 | 1.917
Pb 2 S =2 12265 79 | 2541 Th 4 F -1 2.068
Pb 4 0 -2 2042 || T 4 o) -2 [ 1806 | 52 | 1.815
Pr 3 0 =2 2150 | 65 | 2138 T1 1 I -1 2.822
Rt 2 c -2 1.760 || TI 1 S -2 [ 2220] 50 | 2.545
Rt 4 o} -2 [ 1879 U 4 F -1 2,038
Rb 1 cl =1 12310 56 | 2652 U 6 o] =2 12059 | 43 | 2075
Rb 1 o) =2 2220 70 |2263] v 3 o) -2 [ 1762 | 52 | 1.743
S 2 N =2 | 1690 | 56 | 1597 v 4 o) =2 | 1770 | 52 | 1.784
S 2 N -3 1.682 || v 5 0 =2 [ 1791 ] 51 | 1.803
S 4 N -3 1762 (| w 6 o) -2 11904 | 60 | 1.917
S 4 0 2 [ 1629 | 46 | 1644 y 3 0 -2 12070 70 | 2.019
S 6 0 -2 1.624 || Yb 3 0 -2 1.965
Sb 3 F =1 11772 37 | 1883 7 2 c | 2.027
Sb 3 0 =2 1910 ] 45 | 1973 | zn 2 0 -2 1.704
Sb 3 S =2 12450 | 60 | 2474 7z 4 F -1 1.846
Sb 5 F -1 | 1.830 73 | 1797 zr 4 0 -2 | 1950 | 60 | 1.928

Note: The R 1 and N parameters for equation (2) are taken from [8-10], the parameters R for equation (3) are taken from [15, 18]; 4 =
0.37 Afor all the pairs of atoms.
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APPENDIX 2
Theoretically predicted bond lengths for some structures
Bond length, A Bond length, A
Bond Bond valence Bond Bond valence
calc. obs. calc. obs.
S13Ti,04 KFeFPO,

Sr(1)-0(1) 0.1704 2.772 2.760 K(1)-0(1) 0.116 2.929 3.060
Sr(1)-0(3) 0.1647 2.785 2.764 K(1)-0(2) 0.124 2.904 3.010
Sr(2)-0(2) 0.2546 2.624 2.651 K(1)-0O(3) 0.124 2.904 2.917
Sr(2)-0(3) 0.1816 2.749 2.766 K(1)-0(5) 0.162 2.805 3.085
Ti-O(1) 0.6591 1.969 1.964 K(1)-0(6) 0.121 2.913 3.032
Ti-O(2) 0.7265 1.933 1.951 K(1)-0(7) 0.129 2.889 2.832
Ti—O(3) 0.6535 1.972 1.976 K(1)-0(8) 0.121 2.913 2.723
Ba,FeSi,0; (hardystonite) K(1)-F(1) 0.052 3.084 2.677
Ba-0O(1) 0.113 3.090 2.820 K(1)-F(2) 0.052 3.084 3.044
Ba-0(2) 0.306 2.723 2.730 K(2)-0(1) 0.136 2.870 2.707
Ba-0(3) 0.242 2.810 2.820 K(2)-0(2) 0.144 2.849 2.751
Fe-0O(3) 0.500 1.990 1.960 K(2)-0(3) 0.144 2.849 3.079
Si~O(1) 0.887 1.668 1.630 K(2)-0(6) 0.141 2.856 2.709
Si~O(2) 1.081 1.595 1.560 K(2)-0(7) 0.149 2.836 2.870
Si-0(3) 1.016 "~ 1.618 1.630 K(2)-0(8) 0.141 2.856 2.887
Sr3Zr,04 K(2)-F(1) 0.072 2.965 2.924
Sr(1)-0(1) 0.1704 2.772 2.754 K(2)-F(2) 0.072 2.965 2.632
Sr(1)-0(3) 0.1647 2.785 2.804 P(1)-0(2) 1.213 1.546 1.543
Sr(2)-0(2) 0.2546 2.624 2.716 P(1)-0(3) 1.213 1.546 1.548
Sr(2)-0(3) 0.1816 2.749 P(1)-0(4) 1.356 1.504 1.532
Zr-0(1) 0.6591 2.082 2.053 P(1)-0(7) 1.218 1.544 1.538
Zr-0Q2) 0.7265 2.046 2.017 P(2)-0(1) 1.236 1.538 1.535
Zr-0(3) 0.6535 2.085 2.063 P(2)-0(5) 1.282 1.525 1.531
Y,SiBe, 0, : P(2)-0(6) 1.241 1.537 1.545
Y-O(1) 0.439 2.327 2.340 P(2)-0(8) 1.241 1.537 1.545
Y-0O(2) 0.467 2.300 2.306 Fe(1)-0(4) 0.641 1.923 1.956
Y-0Q3) 0.290 2.4717 2.450 Fe(1)-0(6) 0.947 | 1.779 1.923
Si-0O(3) 1.128 1.624 1.670 Fe(1)-0(7) 0.505 2.011 2.032
Be-O(1) 0.563 1.593 1.560 Fe(1)-0(8) 0.947 1.779 1.947
Be-O(2) 0.596 1.572 1.550 Fe(1)-F(1) 0.428 1.992 2.034
Be-0(3) 0418 1.703 1.710 Fe(1)-F(2) 0.428 1.992 2.009
Fe(2)-0O(1) 0.511 1.982 2.049
Fe(2)-0(2) 0.519 1.976 1.975
Fe(2)-0(3) 0.519 1.976 1.962
Fe(2)-0(5) 0.557 1.950 1.993
Fe(2)-F(1) 0.447 1.976 1.968
Fe(2)-F(2) 0.447 1.976 1.993
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