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Abstract

The prediction of crystal structure is a key outstanding problem in materials science
and one that is fundamental to computational materials design. We argue that by
combining the predictive accuracy of quantum mechanics with data mining tools to
extract knowledge from a large body of historical experimental or computational results,

this problem can be successfully addressed.
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Introduction

Over the last 40 years, ab initio methods
have become ubiquitous tools in chem-
istry, physics, and materials science.
Ab initio methods, which accurately solve
the fundamental quantum mechanical
equations (Schrodinger or Dirac) for the
electrons of a system, hold the promise of
virtual materials research, that is, learning
the properties of materials completely by
computation, before experimental synthe-
sis and testing. In the last decade, signifi-
cant advances in solid-state physics,
fundamental materials science, and ad-
vanced computing have brought us closer
to that objective, and accurate ab initio
approaches now exist for many properties
(e.g., diffusion, thermodynamic quanti-
ties, ferroelectricity, lattice parameters,
elastic constants, etc.). The September
2006 issue of MRS Bulletin on density
functional theory (guest-edited by J. Hafner,
C. Wolverton, and G. Ceder) highlights
some of the successes of ab initio methods
in a variety of materials research areas.

AD initio studies are still primarily used
to further the understanding and rational-
ize the properties of well-known mate-
rials. Studies of this type bypass the
problem of predicting the structure of a
material, as it is usually known from ex-
periment. If we peek into the future and

imagine true virtual materials design, our
efforts will need to extend beyond prop-
erty prediction and address the problem
of structure prediction. Most materials
properties, from bandgaps to brittle frac-
ture, melting temperature to magnetism,
depend strongly on the structure of the
materials involved, and without knowl-
edge of the crystal structure, ab initio com-
putations easily become irrelevant. Hence,
the full power of ab initio calculations for
materials design will only be unlocked if
we address the problem of structure pre-
diction. In this article, we focus on equilib-
rium crystal structure prediction, setting
aside the even more difficult problem of
predicting amorphous and metastable
structures.

Data Mining Structure Prediction
Predicting the stable crystal structure of
a material in essence requires one to find
the atomic arrangement with lowest free
energy (at non-zero temperature), or with
lowest energy (at zero temperature and
pressure). We only focus here on the zero-
temperature, zero-pressure ground-state
search, as it is also a key component of any
finite-temperature, finite-pressure study.
Models to construct the free energy of
a given structure or class of structures
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(e.g., those on a fixed topology) are well de-
veloped and have led to a large number of
successful phase diagram computations.'”

Both an accurate description of the ener-
getics of a material as well as a strategy to
search through the almost infinite space of
possible structures are needed to find the
most stable structure. Decades of work
with ab initio methods studying specific
systems and/or properties, typically
using the local density approximation
(LDA) or generalized gradient approxi-
mation (GGA) to density functional theory
(DFT), as well as a more recent large-scale
comparison of computationally predicted
ground states with experiments in 80 bi-
nary alloys,® indicates that the accuracy of
DEFT is not the limiting factor for predict-
ing structure: Only rarely does DFT erro-
neously predict an equilibrium structure
that is different from the experimentally
observed one, though much effort has
been spent on the few cases where DFT
fails in this regard.®

The difficulty of predicting structure
lies primarily in the searching strategy.
One may think of this as an optimization
problem in the space of 3N coordinates,
where N is the number of atoms in the sys-
tem. Due to the high dimensionality of the
space, many local minima exist in this
space, and the global minimum energy
configuration usually cannot be found
through intuitively appealing approaches,
such as static or dynamic minimizations
of the energy with respect to the positions
of atoms. It is worth pointing out that
promising genetic algorithms, a class of
optimization strategies based on evolu-
tionary approaches, have recently been
explored.”

Instead, structure is often “predicted”
by a suggest and test approach: candidate
structures are selected by the researcher,
and DFT is used to compare their relative
stability. The process of determining good
candidates from what is already known
can be viewed as a problem in data min-
ing. Currently, the candidates are usually
suggested based on personal intuition.
Such an approach is of course limited by
human ability to include the correct struc-
ture in the guess.

We believe that by formalizing this
data mining step, and by codifying
and quantifying knowledge obtained
from past experience—computational or
experimental—one can make systematic
informed guesses about the crystal struc-
tures that are likely to form in a new,
unexplored system. It is important to un-
derstand that suggesting a reasonable,
and short, candidate list of structures con-
taining the true ground-state structure
with a high probability essentially solves
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the crystal structure prediction problem.
This is because ab initio energy methods
can easily be used to determine, with high
accuracy, the lowest-energy structure
from a short list of candidates. Hence, the
problem of predicting crystal structure
can be solved, for all practical purposes,
by combining modern quantum mechani-
cal methods with machine learning tech-
niques® into a common framework. A
machine learning method, trained on
previously obtained results, inductively
captures the underlying physical rules
governing structural stability, and quan-
tum mechanics provides the final accu-
racy. This is a deviation from past efforts
that treat structure prediction either as a
mathematical optimization problem on
the DFT functional, with no embedded
historical knowledge,”'® or as a heuristic
problem trying to define simple rules such
as ionic size and electronegativity to predict
structure. Data mining structure prediction
(DMSP), on the other hand, integrates the
best of both of these approaches.

How can historical data on structure be
embodied into rules or information that
can intelligently steer ab initio energy
methods toward the stable structure in a
new system? Figure 1 shows the key ideas
of the approach. “Knowledge” about
structure can be extracted from large
amounts of computational or experimen-
tal results. A variety of standard data min-
ing methods such as principal component
analysis, neural networks, clustering
schemes, and so on, could in principle be
used for this knowledge extraction,
though at this point only principal com-
ponent regression and Bayesian probabil-
ity methods have been tested. This
historical knowledge is then used to sug-
gest candidate structures to be evaluated
with DFT. Curtarolo et al. showed the suc-
cess of this approach by extracting knowl-
edge from a large set of computed data.®

Learning Predicting

> =

Computed data artifical L, Quantifiable
intelligence knowledge
Data mining method

Ab initio
methods
/]

Experimental
data

Figure 1. Knowledge about rules that
govern crystal structure stability can be
extracted using data mining tools on a
large amount of experimental or
computed structure information. This
knowledge can then be used to inform
quantum mechanical methods and drive
them toward the most likely structures.
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In a high-throughput mode, they com-
puted the energy of 114 structure proto-
types in each of 55 systems, and used
principal component analysis to show that
the DFT energy differences between crys-
tal structures are strongly correlated
across chemical systems.

The method proposed by Curtarolo ex-
ploits the fact that there are clear depen-
dencies between the energies of different
crystal structures. For example, if two struc-
tures are stabilized by ionic interactions,
then their relative energy will tend to go
up and down together as the system
under study is more or less ionic. Rather
than resort to physics-based models, data
mining methods can capture this correla-
tion in a purely mathematical and there-
fore less biased form. Using principal
least-squares regression on the computed
training data set, they were able to signifi-
cantly accelerate finding the lowest-
energy structure for a new system. Such a
knowledge-driven search can be imple-
mented in an iterative manner. Starting
with some minimal information about the
system (e.g., only element structure data),
the correlations extracted from the train-
ing data set are used in DMSP to suggest
low-energy structures for intermetallic
compounds in the new system. Calculat-
ing the energy of these suggestions with
ab initio methods provides more informa-
tion about the system, which can then
be used in a new iteration of the DMSP.
Figure 2 shows the number of ab initio
computations that were needed to predict
the ground-state line of the 55 binary al-
loys tested with a given accuracy. With
only 26 structure calculations per alloy
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Figure 2. Knowledge based on a set of
computed data in 55 binary alloys was
used to inform this algorithm.® The
DMSP curve shows how many
calculations are needed on average to
obtain the ground-state line of these
alloys with a given accuracy. Comparison
with random testing of structures
shows clearly that knowledge is
embedded in the data mining structure
prediction (DMSP) method.

system—a very reasonable effort with
modern computing—90% of the ground
states are correct.

Experimental Versus Virtual Data

Even though high-throughput compu-
tations" make it possible to gather a large
amount of information on which learning
methods can be trained, experimentally
obtained crystal structure data has the ad-
vantage of providing information on the
true, most stable crystal structure over a
large number of chemistries. Using exper-
imental data to quantify knowledge poses
different challenges from using computed
data, as the former is non-numerical and
discrete: A structure either occurs or does
not, and information rarely exists as to
how close in energy competing structures
may be, limiting the use of energy-based
data mining schemes. But as shown by
Fischer et al.,” information can be ex-
tracted in other ways. For example, one
may ask the question to what extent the
occurrence of two crystal structures (e.g.,
at two different compositions in an A-B
alloy) are correlated, expressed in mathe-
matical terms as

p(xi/ x])

flxi, x) = Ppx)

@

where x; and x; are variables representing
crystal structures appearing at composi-
tions 7 and j in the alloy, p(x;, x;) is the prob-
ability that both will occur in the same
binary system picked at random, and p(x;)
is the probability for the structure appear-
ing at composition i. If nature were ran-
dom, these correlations would converge
to one for all pairs of structures when
sampled over a large enough number of
systems. Instead, it is expected that the
underlying molecular-level interactions
will drive some structures to frequently
appear together, resulting in a correlation
ratio greater than one, while others, inde-
pendently stabilized by very different
physical phenomena, will yield a correla-
tion ratio approaching zero. Sampling the
structure-structure and element-structure
correlations present between 611 different
structure types in 1335 binary metallic al-
loys in the Pauling file," one of the largest
databases for the structures of binary met-
als, shows strong correlation or anticorre-
lation between pairs of structures. For
example, the Fe,C-type structure at AB;
composition and the MgCu,-type struc-
ture at A,B appear together in 52 of the
87 alloys in which Fe;C is present, giving a
correlation ratio f of 8.49. In other words,
given that Fe,C is present at AB;, it is
8.49 times more likely that MgCu, will
form at A,B than if the structures were
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uncorrelated. In this case, a physical origin
for the correlation can be clearly identi-
fied, as both structures form in systems
where the constituent elements A and B
are of very different size. As such, these
structures are very unstable when the
roles of small and large atoms are inter-
changed, a fact which is also borne out by
the data: the correlation ratio for Fe,C
forming at the same composition, AB;, but
MgCu, at AB, (instead of A,B) reveals
strong anticorrelation and f = 0. It is im-
portant to stress that while in some cases
the physical effect driving (anti)correla-
tion is clear, the strength of data mining
approaches is that they can extract corre-
lation information without first specifying
an underlying physical mechanism.

It is possible to quantify the extent to
which such correlations are useful for pre-
dicting structure. An often-encountered
situation is that a compound is known to
form at one composition in an alloy, but
what appears at other compositions re-
mains unknown. To what extent does
knowledge of structures at one composi-
tion provide predictions for structures at
other compositions? This concept can be
represented mathematically by the mu-
tual information I;; between composi-
tions i and j, given by

_ p (xir x/)
i = & P ) ]n{ P } @)

where the sum extends over all combina-
tions of structures x; and x;that can appear
at compositions i and j.

Figure 3 shows the mutual information
between compositions, as well as between
a composition and a constituent element
(the brighter areas are the more mutually
informative). Bright pixels for rows la-
beled “A” and “B” in Figure 3 reiterate the
fact that crystal structure in a binary alloy
is strongly influenced by the identity of its
constituent elements, giving substantial
credence to methods empirically relat-
ing structure to an elemental property.'*5
Correlation between the structure of
A,_.B,, where c is a composition variable,
and element A in the two-row AB matrix
in Figure 3 is understandably very strong
when the system is rich in A, but decreases
only slowly with increasing B content.
The structure-structure correlations
shown in Figure 3 reflect the fact that in-
teractions present at one composition are
indicative of interactions at other compo-
sitions, a result which should not be too
surprising.

There are many ways to use such strong
correlations in experimental data for more
efficiently suggesting structure. A formal
procedure was outlined and tested by
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Figure 3. Correlation map for binary alloys, showing to what degree knowledge of crystal
structure at one composition, i, determines the structure at another composition, j. The
two bars below the map show to what degree the crystal structure in an alloy is related to

the knowledge of the element (A or B).

Fischer et al.,”> who constructed a proba-
bility function in the space of all possible
structure combinations and chemistries,
P[X = (A, B, x;, ..., x;)] where the variable
x; indicates the crystal structure present at
composition ¢; and A and B identify the
constituent elements “A” and “B” present
in the alloy. Note that the vector X = (A, B,
X;, ..., x) fully describes states of the alloy
A-B. Such a probabilistic model provides
anatural framework in which one can uti-
lize the various degrees of partial knowl-
edge about an alloy system in a consistent
manner. For example, let e be the vector
that contains what is already known about
the system. Other than the chemical na-
ture of the elements, this almost always
includes the crystal structure of the ele-
ments, but can also include knowledge of
structures at other compositions. Deter-
mining candidate structures at other com-
positions then consists of determining the
conditional probability P(X|e), or trans-
lated, what is the probability for a particu-
lar set of ground states, X, based on what
we already know about the system, e?
Practical predictions require an explicit
form of P(X), which can, for example, be

MRS BULLETIN e VOLUME 31 « DECEMBER 2006 ® www/mrs.org/bulletin

achieved with a cumulant expansion. In
general, P(X) should be constructed in a
manner that is consistent with known infor-
mation while remaining maximally non-
committal or spread out."®

Correlation between the occurrence of
structures at different compositions—for
example, sampled from a database of ex-
perimental structure information—can be
used to inform a probability density P(X)
that in turn can be used to predict struc-
tures in new materials. Table I shows the
results of such a prediction for AgMgs,,
where experiments have indicated the
presence of a compound but with a yet
undetermined crystal structure. A proba-
bility density constructed from available
data in the Pauling file and conditioned on
the limited knowledge of structures occur-
ring at other compositions in the Ag-Mg
system predicts the CusP structure as the
most likely candidate for the ground state.
Four other highly ranked structures are
also shown in Table I. A DFT calculation of
the energy of these five candidate struc-
tures as well as 26 other structures identi-
fied the Cu;P structure as having the
lowest energy, indicating that this data
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Table I: Data Mining Prediction for the
Crystal Structure of AgMgs.

DMSP-Ranked Rank Based on

List of Candidate Frequency of
Structure Types Occurrence
for AgMg; in Nature
1. CusP 21
2. BiF; 7
3. IrAl, 15
4. SrPb, 14
5. MgsCd 4

Notes: The first column shows five structure
prototypes suggested (and ranked) by the
data mining algorithm based on their
probability to be the ground state for AgMgs,
given knowledge of the elemental structures
and the structures at AgsMg and AgMg. The
second column gives the frequency with which
each of these structures occurs in nature at that
stoichiometry. First-principles computations on
these and 26 more structures revealed no
lower-energy structures than CusP.

mining algorithm is extremely efficient in
suggesting low-energy structures.

Figure 4 shows on a larger scale how
well data mining methods can suggest
structure. By testing the data mining ap-
proach on 3975 compounds appearing at
least twice in the Pauling file database of
binary metallic alloys, Fischer et al. ob-
tained statistics on the accuracy of this
method. For each prediction in an A-B
alloy, all information about that alloy was
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Figure 4. Knowledge based on the
experimental information in the Pauling
file is used to rank candidate structures
in an alloy left out deliberately. The blue
curve shows how long the candidate
list produced by the data mining
algorithm needs to be (“depth of list”) to
contain the true ground state with a given
probability. For comparison, random
guessing (orange curve) and picking
structures based on the frequency with
which they occur in nature (red curve)
are also shown.
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removed from the data, and an ordered
list of candidate structures was generated
for each composition by the data mining
algorithm. Figure 4 shows how far one
must descend down this list to have a cer-
tain probability of finding the true struc-
ture for three different methods. The data
mining approach (DMSP, blue curve) is
very effective in predicting the true
ground state, requiring the investigation
of only five structures for a 90% chance
of finding the true structure. Comparing
the data mining approach with two sim-
pler data mining schemes shows that it
embodies considerably more knowledge:
Picking trial ground states based on the
frequency with which they occur in nature
(red curve in Figure 4) is an obvious ap-
proach but results in only 62% accuracy
when investigating a five-structure sug-
gestion list. As a point of reference, the re-
sult of guessing structures with a uniform
probability (at random) is also shown
(orange curve in Figure 4). The improved
efficacy of DMSP is of practical value, as
the length of the list is the number of
ab initio computations one needs to per-
form to obtain the correct ground state
with a certain probability. Clearly, once the
DMSP method is trained by a body of his-
torical results, this list is remarkably short.

Conclusions

These examples indicate the power of
data mining to capture historical knowl-
edge in non-implicit rules, and to use
them to rapidly drive quantum mechanics
toward low-energy structures.

We believe that such a synergy between
knowledge methods and quantum mechanics
addresses the limitation that currently ex-
ists in structure prediction approaches.
While computational quantum mechanics
is highly accurate, it is not suggestive, and
incorporates knowledge only through the
experience of the user.

On the other hand, many heuristic
methods have been developed to relate
the structure of materials to simple prop-
erties of their constituent elements. Struc-
ture maps using electronegativity, atomic
size, or simple position in the periodic
table have had substantial success in or-
ganizing various structure types."”

While such heuristic methods create
considerable insight into the physical
mechanisms that control structure selec-
tion, their accuracy is limited by assump-
tions made regarding what constitutes
relevant physical parameters, and often
by their focus on only elemental properties.

An advantage of data mining methods
is that the important parameters do not need
to be identified a priori, and large, complex
data sets, like the known intermetallic

structures, can be automatically mined
for their hidden information. Moreover,
typical heuristic methods lack a mecha-
nism to systematically improve upon pre-
diction ability. Using data mining to
suggest a meaningful candidate list of
structures that can be sorted through
quickly with quantum mechanics com-
bines the suggestive character of knowl-
edge methods with the accuracy of
quantum mechanics and is a pragmatic
and functional solution to the problem of
predicting crystal structure.

Data mining approaches are a radical
departure from the deductive logic ap-
proach in science and are typically found
more often in consumer preference stud-
ies, business, and social sciences. Ideally,
one would predict the macroscopic prop-
erties of a material by understanding and
formalizing its relation to all relevant un-
derlying microscopic phenomena. While
such an approach is often intellectually
more satisfying to the physical scientist,
the complexity of many materials and the
length and time scales that need to be
bridged sometimes render the deductive
approach virtually impossible.

For properties for which it is difficult to
create or implement a formal coarse-
graining theory to predict macroscopic
properties from microscopic calculations,
data mining, which allows the underlying
relations to be established inductively,
may be an alternative approach. Data
mining techniques have been adapted
for a number of materials properties,
including boiling points, creep, mechani-
cal weld properties, time—temperature—
transformation diagrams, and catalytic
activity (see review in Reference 18). Crys-
tal structure is now joining a host of other
materials properties that are being treated
with data mining methods.
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