The precise analogy with ice: Bernal-Fowler (1933) Ice rules

- Oxygens in ice-I_h form a wurtzite (tetrahedral) lattice, with an O-O distance of 2.76 Å
- The 0.95 Å OH bond of H₂O is retained in ice-I_h
- Each oxygen must have two H at 0.95 Å and two at 1.81 Å, but *which two*?

Pauling (1935): Ice-*I*_h has *residual entropy*

[CONTRIBUTION FROM THE GATES CHEMICAL LABORATORY, CALIFORNIA INSTITUTE OF TECHNOLOGY, NO. 506]

The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement

BY LINUS PAULING

16, 4-vertex models:

Pauling (1935): Ice-*I*_h has residual entropy

[CONTRIBUTION FROM THE GATES CHEMICAL LABORATORY, CALIFORNIA INSTITUTE OF TECHNOLOGY, NO. 506]

The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement

BY LINUS PAULING

6 ways of arranging H around O so that ice rules are obeyed. Each bond has a 1/2 probability that the proton is is in an aceptable position.

 $S = k_{\rm B} \ln W$ and W = (6)(1/2)(1/2) = 3/2

calculated: 0.80 cal/K/mol measured: 0.82 cal/K/mol

The A atom network of connected A_4 tetrahedra in $A_2B_2O_7$ is *frustrated* with respect to certain kinds of magnetic ordering. Similarities with the crystal structure of ice I_h : the notion of *spin ice*.

Bramwell, Gingras, *Science* **294** (2001) 1495.

 $Pb_2Sn_2O_6$: An ice analog $[Pb_2Sn_2O_6\square$: $Pb_2\square$ is similar to H_2O] "lead-tin yellow" Morgenstern-Badarau, Michel, *Ann. Chim.* 6 (1971) 109.

The Pb^{2+} are like H in H_2O . In which direction should they distort ?

Understanding structural details through neutron diffraction: $Bi_{1.5}Zn_{0.5}B_{1.5}Zn_{0.5}O_7$ [B = Nb (BZN); Ta (BZT); Sb (BZS)]

Ideal ordered supercell

RMC structure

 $Bi_{1.5}ZnNb_{1.5}O_7$: Incoherent displacements associated with the lone pair active Bi^{3+} can be followed using real-space neutron techniques (NPDF, Los Alamos).

Bi₂Ti₂O₇: Compute instabilities – calculations by Craig Fennie and Karin Rabe (Rutgers) suggest that it is potentially a ferroelectric with $P \sim 40 \ \mu C/cm^2$.

 $Dy_2Ti_2O_7$

Bi₂Ti₂O₇ does indeed have signatures in the heat capacity that suggest *local* low energy modes that do not freeze out.

Conclusions:

Increasing evidence for the validity of idea that local coöperativity of off-centering can be frustrated by lattice geometry. Possibly a way of designing new high-*k* materials without phase transitions.

