Nanowires for Use in Medical and Biological Applications

Ryan Davis Materials 265 11/17/08

Outline

- Biological Applications
 - Applying mechanical forces to cells
- Biotemplating
 - Aiding in the bone growth
- Biomolecule and Nanoparticle Transfer
 - Hydrophobic treatment of nanowire substrate
- Cancer detection
 - Recognition of cancer proteins

Application of Mechanical Force to Cells

- Cobalt nanowire formed by electrochemical deposition in alumina filter templates
 - □ 350 nm diameter and 5-7µm in length
- Inserted in microfabricated poly(dimethylsiloxane) (PDMS) posts
 - 3 μm in diameter and 10 μm in length
- Magnetic field applied to align nanowires

Application of Mechanical Force to Cells

- Horizontal magnetic field applied by electromagnet on microscope stage
 - Cycled between -0.31 T and 0.31 T
- Deflection calculated by measuring the displacement of the centroid of the posts
 - 0.5-1 μm
- Displacement always the same direction magnetic moment of nanowire changes with the field

Application of Mechanical Force to Cells

- Measure cells response to externally applied mechanical force
 - Focal adhesions are proteins that respond to applied force, aid in locomotion, and may transmit information from the extracellular matrix to the cytoskeleton¹
 - Traction force is the force applied by the cell to initiate locomotion or resist locomotion

Physiological Uses – Bone Biotemplating

- Current goal of orthopedic research is to design implants the induce controlled growth and help shorten healing times
- Silicon nanowires (SiNW) and bone material and protein structure are hypothesized to have compatible nanostructure
 - \Box Ca₃(PO₄)₂ and protein molecules in extracellular matrix
- Will promote osteoblast differentiation and matrix production (stimulate growth and adhesion)

http://z.about.com/d/arthritis/1/0/L/C/kneexray.jpg

Bone Biotemplating

- Fabricated using 40nm gold colloid deposited on poly-l-lysine coated fused silica
- Placed in furnace at 480 °C with SiH₄ gas, which decomposes on the gold
- Silicon forms a eutectic residue from which the nanowire precipitates
 - Diameter defined by size of gold particle
- Density varied by density of colloid and reaction time in furnace
 - Low density
 - High density long
 - High density short

Bone Biotemplating

- Well plates were filled with sterilized SiNW, fetal osteoblasts (50,000/well), and nutrient solution
- Controls of fused silica, polystyrene, and latex were used
- Results measured by calcium concentration, XPS, and SEM

Bone Biotemplating – Methods and Results

- SiNW showed much better osteoblast performance than control materials
- May be used to coat implants in future to aid to strengthen the bone implant interface

- SiNW fabricated using VLS method or by chemical etching of crystalline silicon in AgNO₃/HF solution
- Nanowires are then treated with silicon a oxide layer (hydrophilic) or octadecyltrichlorosilane (hydrophobic)

- Nanowires substrate patterned using optical lithography
 - □ Patterns between 100 µm to 1 mm in diameter
- Water droplets are self confined in hydrophilic region

- Transfer of molecules, peptides, and nanoparticles was tested using substrate
 - Surface exposed to rhodamine labeled strivectin and was observed for fluorescence
 - No evidence of protein absorbance on surface

- Substrate treated with aminopropyltriethoxysilane
 - Favors NH₂ interactions with colloidal gold
 - Homogeneous distribution of nanoparticles on SiNW

(A)

 Materials can be used for single cell transfer, digital microfluidic devices, and self cleaning devices

http://microfluidics.ee.duke.edu//

Cancer Detection

- SiNW arrays synthesized by chemical vapor deposition using 20 nm gold particle and silane gas
- Nanowires doped with either diborane (p-type) or phosphine (n-type)
- Treated with desired antibody
- Showed response on the fM scale (change in conductance)
- Achieved multiplexed detection
 - Recognition of multiple cancer proteins
 - Prevention of false positives

Cancer Detection

- Able to detect both cancer proteins and telomerase
 - Telomerase has been found in 80% of all human cancers
 - Good secondary identifier

Change in conductance indicates positive identification

Cancer Detection

- Prevention of false positive is achieved through coating both p-type and n-type on nanowires
 - Negatively charge antibodies result in a positive increase in conductance on p-type and a decrease in n-type

Any Questions?

