Magnetotactic Bacteria

Makers of Mini Magnets

Materials 265 11/5/08

Kristen Murphy

Background and Discovery

Salvador Bellini first described the bacteria in 1963

1975 Richard Blakemore published in Science and called them

"magnetotactic"

Usually located in costal environments

- Have been found in the deep ocean as well
- Usually found in oxic-anoxic transition zones

Anatomy

- Gram negative bacteria
- Can be single or multi-cellular

 Cell shapes include ovoid cells (cocci), rod-shaped (bacilli), curved bacteria (vibrio) and helical (spirillum)

Magnetosome

- Biomineralization occurs in the magnetosomes
- Small lipid bilayer sacks that are a part of the cell membrane

Magnetosomes are flanked by cytoskeleton filaments

Magnetic particles

■ Mineral is either inverse spinel magnetite (Fe₃O₄) or greigite (Fe₃S₄)

- Size and shape of vary between species or strain but the same amongst the same species
- Particles align in single or double chains
- Particles are free of internal defects

Lins, U.: Keim, C. N.: Evans, F. F.: Farina, M.: Buseck, P. R. *Geomicrobiol, J.* 2007, 24, 43

Magnetosomes are anchored to the filaments with the protein mamJ

- Wildtype MTB form chains as expected, mamJ deficient form clumps of particles
- Filaments still present but magnetosomes are not anchored

Biomineralization

- Vesicle forms before biomineralization
- Iron taken up by the cell, mineralization occurs at magnetozome membrane
- Formation at vesticles along entire chain length

- Vesicle migrates as crystals form
- Mature crystals are at the center of the chain

Size and Shape Control

- Unknown how the shape is controlled
- What affects shape includes:
 - Mms6 protein, Δ *mamA* and Δ *mamGFDC* genes, supersaturation state, iron supply direction, concentration of activation molecules/ions, iron uptake rate, oxygen partial pressures, pH, redox potential and temperature

Size controlled so they are single domain but above the

superparamagnetic size

- hydrophobic magnetosome proteins
 MamG, MamF, MamD, and MamC are involved in size control
- Possible that magnetosome vesicle size constrains growth

Scheffel, A.: Schüler, D. *J. Bacteriol.* **2007**. *189.* 6437

Fun Facts

- Magnetotaxis used to navigate oxygen gradients- swim from high to low/no oxygen
- North seeking in northern hemisphere, south seeking in southern hemisphere, equal numbers at the equator
- 1% in each hemisphere are opposite polarity
- Two types of magnetotactic bacteria: polar and axial
- Can't be demagnetized but polarity can be reversed

Simmons, S. L.; Bazylinski, D. A.; Edwards, K. J. *Science* **2006**, *311*, 371

Frankel, R. B.; Bazylinski, D. A.; Johnson, M. S.; Taylor, B. L. *Biophys. J.* 1997, *73*, 994

Dunin-Borkowski, R. E.; McCartney, M. R.; Frankel, R. B.; Bazylinski, D. A.; Pósfai, M.; Buseck, P. R. Science 1998, 282, 1868