Superparamagnetic nanoparticle arrays for magnetically tunable photonics

Josh Kurzman Materials 265

Superparamagnetism

Preparations - embedded SPM composites

coprecipitation of Fe(II) and Fe(III) chloride with NH_4OH at RT

2-15 nm Fe_2O_3 maghemite (10 nm avg. diameter) emulsion polymerization

Polystyrene (PSt) - iron oxide composites

No remanence or coercivity at RT

X. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, and S. A. Asher, *Chem Mater*. **2002**, *14*, 1249-1256

Preparations - Fe₃O₄ size control

Poly acrylic acid (PAA) + FeCl₃ in DEG at 220°C 10 : 1

just precipitate with appropriate amount of NaOH

Differences in saturation magnetization likely due to higher weight fraction of PAA in smaller particles

Trend in μ suggests clusters of SPM nanoparticles offer better field response than quantum dot

ex) 10, 10.3, 10.6, 11.2, 11.5 equiv. NaOH

31, 53, 71, 141, and 174 nm (avg. sizes)

J. Ge, Y. Hu, M. Biasini, W. P. Beyermann, and Y. Yin, *Angew. Chem. Int. Ed.* **2007**, *46*, 4342-4345

Optical response of PSt-Fe₂O₃ composites

Bragg diffraction of vis/IR radiation modified by varying field strength (magnet to sample distance)

2nd order diffraction

Highly charged surfaces on $PSt-Fe_2O_3$ composites, strong electrostatics drive ordering in absence of H.

Colloid assembly in a magnetic field

F_{er}: electrostatic replusive force
F_{ma}: magnetic dipole-magentic dipole
repulsive force

F_m: external magnetic force F_m: magnetic dipole-magnetic dipole attractive force Balance between electrostatic repulsions and magnetic dipole interactions

Particles attracted to maximum of local magnetic field gradient, compressed parallel to field

1D chains self assemble parallel to magnetic field

Structural anisotropy leads to anisotropic optical response

X. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, and S. A. Asher, *Chem Mater.* **2002**, *14*, 1249-1256 J. Ge, Y. Hu, T. Zhang, T. Huynh, and Y. Yin, *Langmuir* **2008**, *24*, 3671-3680

Tuning the interparticle potential

Debye length, "thickness" of the double layer, proportional to $\varepsilon^{1/2}$. Decrease in plane spacing with decrease in dielectric constant

Raising counter ion

increases screening

concentration

X. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, and S. A. Asher, *Adv. Mater.* **2001**, *13*, 1681-1684

Counter Ion Cloud Electrostatic Double Layer

> higher packing densities blue shift

Tuning range and particle size

Responsive photonic modulation

J. Ge, Y. Hu, and Y. Yin, Angew. Chem. Int. Ed. 2007, 46, 7428-7431

Tuning with bimodal distributions

Weak field - large clusters order Medium - clusters order independently Strong - small clusters order

Concentration effects

J. Ge, Y. Hu, T. Zhang, T. Huynh, and Y. Yin, *Langmuir* 2008, 24, 3671-3680

Core/shells for increased tuning range

Max Fe_3O_4 cluster size ~200 nm limits max diffraction wavelength to below 800 nm

Hydrolyzing TEOS in presence of clusters produces SiO_2 shell around SPM core

Shell thickness easily controlled

Core/shells change the diffraction profile

Solvation force provides significant repulsion in non-aqueous solvents

Solvent wets a film on silica surface; disjoining pressure when overlap occurs

Solvation force counters magnetic attraction, leading to skewed profile and "hard contact" conditions

J. Ge and Y. Yin, Adv. Mater. 2008, 20, 3485-3491

Colloid-polymer composites

Fe₂O₃-PSt-AM-BAM hydrogel

Swells upon hydration, red shift

Very slow response time

Fe2O3-PSt-AM-BAM film, 500 µm thick

X. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, and S. A. Asher, Chem Mater. 2002, 14, 1249-1256

Patterning with Fe₃O₄ PDMS composites

SiO₂ compatibility with organic solvents enables fabrication of highly responsive solid composites

"Hard contact" condition allows saturation color selection, maximal contrast

Sequential deposition of 110/28 nm and 110/16 nm (core/shell) particles

Polymerize around steel letter templates, remove, repeat in cavities

Summary and [potential] applications

Highly tunable and rapidly self assembling superparamagnetic colloidal arrays

Facile optimization with control of preparation and electrostatics (or solvation forces)

Variable tuning profiles with different particle architectures

Straight-forward fabrication of field responsive composite solids

Filters Waveguides Sensors Thin film optics Magic ink / refrigerator magnets!

