Graphene

Christopher Olson
University of California, Santa Barbara
Materials 265
November 10, 2008

History

- Diamond and Graphite
- Buckminster Fullerine (C₆₀)
 - 1985: Kroto, Curl, Smalley
 - 1996 Nobel Prize
- Carbon Nano-tube (CNT)
 - Sumio Iijima 1991
 - Various prior works

Introduction

- Stable 2-D lattice exists!*
 - Landau and Peierl hypothesized against this
 - *Actually not exactly flat. Rippled.
- One monolayer of graphite structure
- sp² bonding and one unbound electron

Dr. Thomas Szkopek Website, McGill University

Electronic Structure

- Three localized hybridized electrons
- One unbound electron
 - Hybridized across entire sheet
 - Fourth electron behaves similarly to free electron
 - Interacts with periodic field to form Dirac fermions
 - Cone-like Energy bands
 - Massless fermions

Quantum Sublattices

- Carriers follow Dirac, not Schrodinger Eqn.
- Two identical crystal sublattices
- Quantum-mechanical hopping btw. sublattices
 - Formation of two energy bands
 - Intersect at edges of Brillouin zone as a cone
 - Quasiparticles in graphene behave as massless relativistic particles

$$E = \Box k \nu_F$$

Electronic Properties

- Ultra-high mobility
 - Routinely achieving 20,000 cm²/V·s
 - Order of magnitude better than Si
 - Three times higher than GaAs
 - World record 200,000 cm²/V⋅s set this January
- Ultra-low resistivity
 - Lower than silver (10⁻⁶ Ohm-cm)
- Tunneling probability is always unity

Klein Paradox

- Exponential decay in finite well
- Graphene: tunneling probability is unity
 - Sufficiently strong potential barrier attracts positrons
- Positron wave functions in barrier align with electron wave function

Consequences of Klein Paradox

- Complete tunneling of electrons through potential barriers twice electron's rest energy
- Single-layer graphene transistor will be "always-on", not "normally-on"
- No applied bias will turn it off
- Must create a bilayer graphene transistor
 - Can strongly suppress normally-incident electron tunneling

Fabrication of Graphene

- Mechanical exfoliation of graphite
 - Method used by most people
 - By IBM and others to create first Graphene FET
- Heat up SiC to desorb Si
 - In UHV, heat up SiC to ~1300°C
 - Si atoms sublimate
 - Hexagonal carbon lattice (graphene) left behind

Processing of Graphene

- CNTs have well-defined edges
- Graphene has dangling bonds at edges
- Difficult to cut manually into ribbons
 - By confining electrons to narrow ribbon, open up small bandgap and make transistor possible
- Hope to get graphene nanoribbons (GNRs)
 2 nm wide
- Silicon technology will die at around 20 nm

Graphene Devices

- World record mobility
 - 1-2 orders of magnitude better than Si
 - Over 1 order of magnitude better than GaAs
- Ballistic conduction at submicron distances
- FETs based on QDs
 - Mechanically carve QDs out of graphene sheet
- P-n junction FETs on bilayer Graphene

Schematic of Quantum Dot carved into graphene

Problems/Future Work

- Difficult to make and process
 - Can't make large uniform wafers
 - Difficult to cut uniformly
 - Dangling bonds after cutting cause background electrons to scatter
- Switching speed too slow in prototype graphene transistors

Other Applications

- Gas Sensors
 - Absorption of gas molecules dopes graphene
 - Measure change in resistivity
- THz Light Emitters
 - Human body invisible in THz frequency regime
- Superconductivity (proximity effect)
- Magnetic/spintronics applications
 - Low spin-orbit coupling
- Graphene Oxide Paper
 - Oxidize, float in water, dry as paper

Space Elevator

Random drawings of space elevator

Carbon Nanotube AFM tip

Conclusions

- Extremely new material system
 - Production issues
 - Processing issues
- Excellent electrical and structural properties
- Potential for small nano-scale (2 nm) devices
- Many potential applications
- Will never replace Si, but has plenty of potential niche markets

References

- Mikhail I. Katsnelson, "Graphene: carbon in two dimensions," Materials Today, 2007.
- A. K. Geim, K. S. Novoselov, "The rise of graphene," Nature Materials, 2007.
- R. M. Westervelt, "Graphene Nanoelectronics," Science vol. 320, April 2008.
- Dr. Thomas Szkopek Website, McGill University. http://www.ece.mcgill.ca/~ts7kop/
- Phil Schewe, "Graphene Speed Record," American Institute of Physics – Physics News Update
- Dimitriy Dikin, et. al. "Preparation and characterization of graphene oxide paper," 2007.
 http://www.nature.com/nature/journal/v448/n7152/abs/nature06016.
 http://www.nature.com/nature/journal/v448/n7152/abs/nature06016.
- Dimitriy Dikin website, Northwestern University
- R. Colin Johnson, "IBM fabs graphene FETs," EETimes.

Questions?